
23

Parallelism

What is a Parallelism - Simple Analogy

24

Parallelism

Less fish …

More fish!

Parallelism means
doing multiple things at
the same time; you can
get more work done in
the same time.

25

The Jigsaw Puzzle Analogy

26

Serial Computing

Suppose you want to do a jigsaw puzzle
that has, say, a thousand pieces.

We can imagine that it’ll take you a
certain amount of time. Let’s say
that you can put the puzzle together in
an hour.

27

Shared Memory Parallelism

If Scott sits across the table from
you, he can work on his half of the
puzzle, and you can work on yours.
Once in a while, you’ll both reach
into the pile of pieces at the same
time (you’ll contend for the same
resource), which will cause a little bit
of slowdown. And from time to time,
you’ll have to work together
(communicate) at the interface
between his half and yours. The
speedup will be nearly 2-to-1; you
might take 35 minutes instead of 30.

28

The More the Merrier?

Now, let’s put Paul and Charlie on the
other two sides of the table. Each of
you can work on a part of the puzzle,
but there’ll be a lot more contention
for the shared resource (the pile of
puzzle pieces) and a lot more
communication at the interfaces. So,
you will get noticeably less than a 4-
to-1 speedup, but you’ll still have an
improvement - maybe something like
3-to-1. The four of you can get it
done in 20 minutes instead of an
hour.

29

Diminishing Returns

If we now put Dave, Tom, Horst, and
Brandon on the corners of the table,
there’s going to be a whole lot of
contention for the shared resource
and a lot of communication at the
many interfaces. So, the speedup
you’ll get will be much less than we’d
like; you’ll be lucky to get 5-to-1.

So, we can see that adding more and
more workers onto a shared resource
is eventually going to have a
diminishing return.

30

Distributed Parallelism

Now let’s try something a little different. Let’s set up two tables,
and let’s put you at one of them and Scott at the other. Let’s put
half of the puzzle pieces on your table and the other half of the
pieces on Scott’s table. Now you can work completely
independently, without any contention for a shared resource.
BUT, the cost per communication is MUCH higher (you have to
scootch your tables together), and you need the ability to split
up (decompose) the puzzle pieces reasonably evenly, which may
be tricky to do for some puzzles.

31

More Distributed Processors

It’s a lot easier to add more
processors in distributed
parallelism. But, you always
have to be aware of the need
to decompose the problem
and to communicate among
the processors. Also, as you
add more processors, it may
be harder to load balance
the amount of work that
each processor gets.

32

Load Balancing

Load balancing means ensuring that everyone completes their
workload at roughly the same time.

For example, if the jigsaw puzzle is half grass and half sky, then
you can do the grass and Scott can do the sky. Then you’ll only
have to communicate at the horizon – and the amount of work
that each of you does on your own is roughly equal. So you’ll get
pretty good speedup.

33

Load Balancing

Load balancing can be easy if the problem splits up into
chunks of roughly equal size with one chunk per
processor. Or, load balancing can be very hard.

34

Load Balancing

Load balancing can be easy if the problem splits up into
chunks of roughly equal size with one chunk per
processor. Or, load balancing can be very hard.

35

Load Balancing

Load balancing can be easy if the problem splits up into
chunks of roughly equal size with one chunk per
processor. Or, load balancing can be very hard.

36

37

Why Bother?

Why Bother with HPC at All?

• It’s clear that making effective use of HPC takes quite
a bit of effort, both learning how and developing
software.

• That seems like a lot of trouble to just get your code
to run faster.

• It’s nice to have a code that used to take a day and
now runs in an hour. But, if you can afford to wait a
day, what’s the point of HPC?

• Why go to all that trouble just to get your code to run
faster?

38

Why HPC is Worth the Bother

• What HPC gives you that you won’t get elsewhere is
the ability to do bigger, better, and more exciting
science. If your code can run faster, that means that
you can tackle much bigger problems in the same
amount of time that you used to need for smaller
problems.

• HPC is important not only for its own sake, but also
because what happens in HPC today will be on your
desktop in about 10 to 15 years and on your cell
phone in 25 years; it puts you ahead of the curve.

39

The Future is Now

• Historically, this has always been true:
• Whatever happens in supercomputing today will be on

your desktop down the road.

• So, if you have experience with supercomputing,
you’ll be ahead of the curve when things get to the
desktop.

• Exascale

40

Exa-scale Challenges
• Processor architecture

• Facility power is the primary constraint for the exascale system

• A Xeon based 5.34 petaflop system (Cheyenne) consumes 1.72 MW, so an exaflop
computer would require 320 MW, which is untenable. GPU and KNL have lower
power footprints.

• The target is 20-40 MW in 2020 for 1 exaflop.

• Memory bandwidth and capacity are not keeping pace with the increase in flops

• Clock frequencies are expected to decrease to conserve power

• Cost of data movement

• A new programming model will be necessary

• The I/O system will be much harder to manage

• Reliability and resiliency will be critical at the scale (Component mean-time-to-failure)

• Cost

41

Thanks for your attention!

Questions?
Irfan@ucar.edu

42

References

[1] Image by Greg Bryan, Columbia U.
[2] “Update on the Collaborative Radar Acquisition Field Test (CRAFT): Planning for the Next Steps.”

Presented to NWS Headquarters August 30 2001.
[3] See http://hneeman.oscer.ou.edu/hamr.html for details.
[4] http://www.dell.com/
[5] http://www.vw.com/newbeetle/
[6] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel

Architecture. Intel Press, 2002, pp. 161-168.
[7] RightMark Memory Analyzer. http://cpu.rightmark.org/
[8] ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
[9] http://www.samsungssd.com/meetssd/techspecs
[10] http://www.samsung.com/Products/OpticalDiscDrive/SlimDrive/OpticalDiscDrive_SlimDrive_SN_S082D.asp?page=Specifications

[11] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
[12] http://www.pricewatch.com/

Special Thanks to Henry Neeman, University of Oklahoma for the use of his slides of LCI Workshop, Monday,
May 18, 2015.

43

http://www.caps.ou.edu/present/Jack%20Hayes%20FINAL.ppt
http://hneeman.oscer.ou.edu/hamr.html
http://www.dell.com/
http://www.vw.com/newbeetle/
http://cpu.rightmark.org/
ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
http://www.samsungssd.com/meetssd/techspecs
http://www.samsung.com/Products/OpticalDiscDrive/SlimDrive/OpticalDiscDrive_SlimDrive_SN_S082D.asp?page=Specifications
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/

Acknowledgements

• Henry Neeman, University of Oklahoma for his 2015 LCI Slides.
• Erik Scott (Harris) , Jared David Baker (University of Wyoming) ,

Pamela Hill (NCAR), Shilo Hall (NCAR), Nathan Rini (NCAR), Ben
Matthews (NCAR), Jon Roberts (NCAR), Thomas Engel (NCAR), ,
Jeffrey R. Lang (University of Wyoming) , Jonathan Anderson
(University Colorado, Boulder), Brian Dale Haymore (University
of Utah), Leslie Ann Froeschl (University of Illinois) ,Tim Brewer
(University of Wyoming), Stormy Knight (NCAR), Robert McLay
(TACC) for reviewing and providing feedback on the slides.

• LCI for the opportunity.

44

	Linux Clusters Institute:�Introduction to�High Performance Computing��University of Wyoming�May 22 – 26, 2017
	What is Supercomputing or High Performance Computing?
	Fastest Supercomputer vs. Moore
	What is Supercomputing About?
	What is Supercomputing About?
	What is HPC Used For?
	Supercomputing Issues
	What is a “Cluster”?
	What Does a Cluster Look Like?��Network View
	Slide Number 10
	What Does a Cluster Look Like?
	Cluster Components �All Components Working Together
	Cluster Components �All Components Working Together
	Computational Resources
	Processor Types Examples
	Storage and File System
	Management Infrastructure
	Cluster Management
	Facility
	HPC Software Stack
	High-Speed Interconnect
	HPC Applications and Workflow
	Slide Number 23
	What is a Parallelism - Simple Analogy
	Parallelism
	The Jigsaw Puzzle Analogy
	Serial Computing
	Shared Memory Parallelism
	The More the Merrier?
	Diminishing Returns
	Distributed Parallelism
	More Distributed Processors
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Slide Number 37
	Why Bother with HPC at All?
	Why HPC is Worth the Bother
	The Future is Now
	Exa-scale Challenges
	Thanks for your attention!��Questions?�Irfan@ucar.edu
	References
	Acknowledgements

