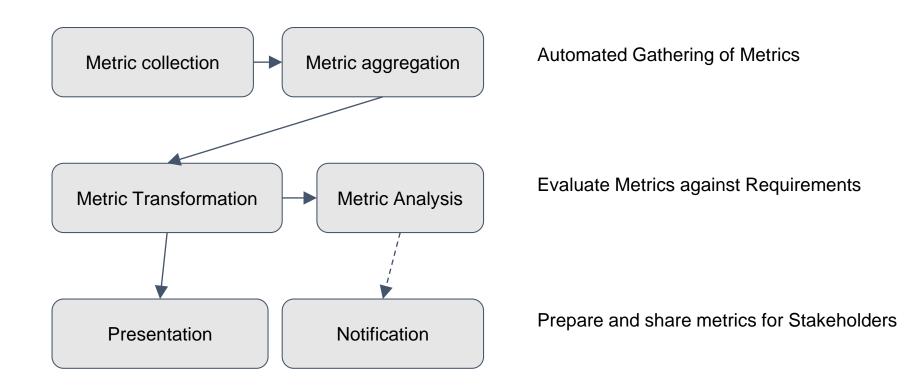


Linux Clusters Institute: Monitoring

Nathan Rini -- National Center for Atmospheric Research (NCAR) nate@ucar.edu

Kyle Hutson – System Administrator for Kansas State University kylehutson@ksu.edu

Why monitor?



Service Level Agreement (SLA)

- •Which services must be provided by you?
- •Which services must be provided to you?
- Regulatory requirements
- Contractual requirements
- Business requirements
- Common Deliverables
 - Availability of services (Uptime)
 - mean time between failures (MTBF)
 - mean time to repair or mean time to recovery (MTTR)

Monitoring and Notification Basic Flow

What to Collect (Metrics)

- Overall cluster health
 - Queue size
 - Jobs running
 - Jobs Queued
 - Overall network usage
 - Number of responding nodes
- Individual node health
 - Load average
 - Memory used
 - Network bandwidth
 - CPU usage
 - Temperature

- Storage
 - Capacity
 - Degraded status
 - Connectivity
 - Security
 - Logs of everything
 - Power status
 - temperatures
 - •Cold-aisle
 - Switches exhausts
 - •CPU temperatures

Metric Collection

- Collection Tools (Common Tools)
 - Ganglia
 - Collectd
 - Perfmon
 - Performance Co-pilot (PCP)
 - Nagios
 - Unified Fabric Manager (UFM)
 - Cacti
 - Syslog
 - TACC stats
 - Scripts

Collection tools already exist to capture most metrics.

No single tool will do everything you need unless you write it yourself

Try to avoid re-inventing the wheel.

Metric Aggregation

- Aggregation Tools
 - Ganglia
 - Collectd
 - Performance Co-pilot (PCP)
 - Nagios
 - Unified Fabric Manager (UFM)
 - Cacti
 - Syslog
 - Round Robin Database (RRD)

Metrics need to be gathered from all over the cluster to a single place for analysis and storage

Most metrics should transfer over the Management Ethernet to avoid interference with Job performance in Low Latency interconnect

Metric Analysis and Transformation

- Monitoring Conundrum
 - Data is useless unless we do something with it
 - •We can collect much more data than we can analyse
 - •We generally won't know what data we need until we need it
 - Exception: Data we must provide for SLA requirements
 - •Limited storage and processing capacity for metric analysis
 - •This is less of an issue as drives get cheaper, but they also aren't getting much faster

Notification

- Notification Tools
 - Nagios
 - •lcinga
 - Zenoss
 - Zabbix
 - PRTG
 - OpenNMS
 - •OP5
 - Pandora FMS
 - Unified Fabric Manager (UFM)

Basic functionality of all alerts: Red, Yellow, Green

Most notification tools are forks or clones of Nagios

Notification tools can be passive or active in querying the status of the cluster

Notification

- Monitoring for known evil
 - Basis for all notifications
 - Only alert if something known bad happens
- Metrics -> Notifications
 - •Most tools will require extensive configuration to be useful
 - •Most tools will have a way to query metrics and create alerts
 - •Some tools, such as Nagios, have this entire process built in
 - Others will have ways to bolt on this functionality
 - Nagios can query Ganglia
 - Ganglia can query Nagios

How should we get notified?

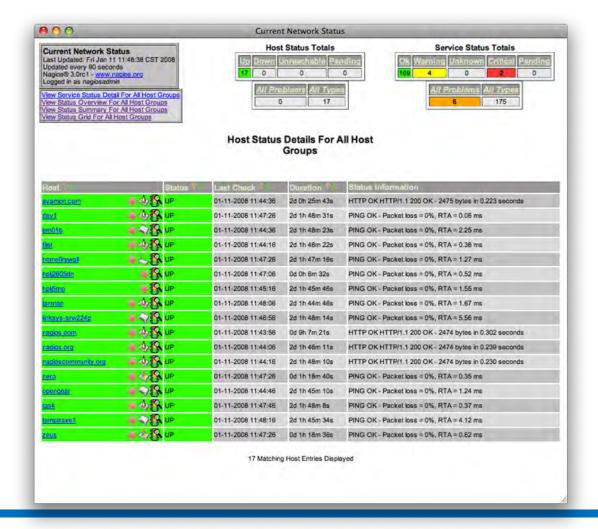
- Emergency
 - •Fire and smoke exiting machine
- Urgent:
 - Email or text or phone call
 - Define this carefully
- Not-so urgent:
 - Web page updates
 - Especially helpful for historical data
 - Email (filtered)
 - End-user support requests

SLA based Alerts

- Alerts on Deliverables
 - Availability of services (Uptime)
 - •Example: Alert if less than 98% of batch nodes are online
 - mean time between failures (MTBF)
 - •Example: Send email report of time between failures
 - •mean time to repair or mean time to recovery (MTTR)
 - •Example: Alert if a down node does not come online after 4 hours down

How often to alert?

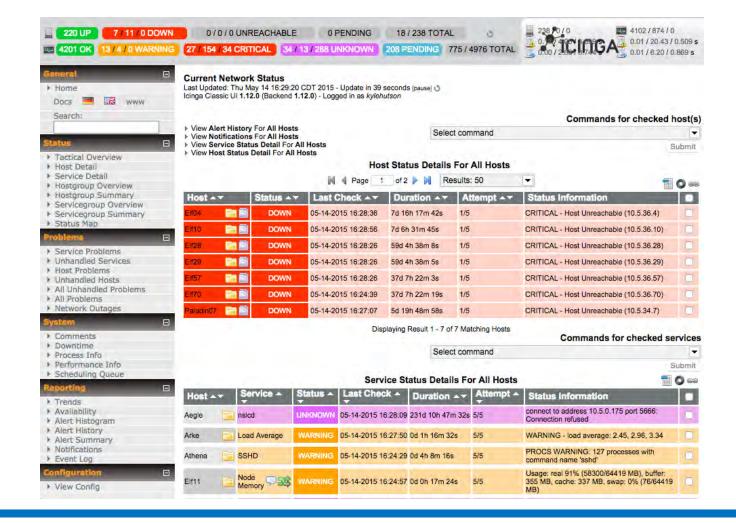
- SLA requirements
 - •If your SLA requires it, you may will need to get called off-hours or even on holidays
- You will quickly get a feel for this
 - Too much info is often worse than too little info
 - The "urgent" continually
 - The "not-so-urgent" anywhere from a few times per day to once per week
 - There's nothing wrong with trial and error
 - Consider aggregated reports for 'not-so-urgent'



Security Alerts

- Securing the cluster
 - Security alerts may need to go to specific groups or people instead of normal operations
 - Regulations and Security rules may apply to cluster which must be enforced
 Compliance to Regulations: Sarbanes Oxley, Fisma, HIPAA, etc
 - Active response may need to be required such as blocking IPs
 - Security status updates
 - Alerts on security failures
 - sudo reports
 - Network login failures (e.g. fail2ban)
 - crontab failures
 - Logfile errors (customize to fit)

Example: Nagios



Example: Nagios

- Nagios/NRPE (Nagios Remote Plugin Executor)
 - Generic executable that runs "plugins"
 - Plugins can monitor just about anything you can think of monitoring
 - Even works with Windows
 - Nagios (http://www.nagios.org/) is by far the most common monitoring system

Example: Icinga

Example: Icinga

- Icinga (https://www.icinga.org/)
 - Can use NRPE
 - (New) version 2 has its own client
 - Uses database backend for history
 - Multi-threaded and multihomed

Example: Ganglia

Example: Ganglia

- Ganglia (http://ganglia.sourceforge.net/) for historical and resource monitoring
 - Ours are public
 - RRD files give historical data (a.k.a. "lots of pretty graphs")

Monitoring Future

Large data analysis using machine learning