
Linux Clusters Institute:
Scheduling and Resource

Management

Brian Haymore, Sr IT Arch - HPC, University of Utah
May 2017

This content was originally developed by Ryan Cox (2014) and updated by Brian Haymore
(2017) in for LCI.
(image source: xkcd.org)

May 2017 2

Slurm Workload Manager

• What is Slurm?
• Installation
• Slurm Configuration
• Daemons
• Configuration Files
• Client Commands
• User and Account Management
• Policies, tuning, and advanced

configuration
• Priorities
• Fairshare
• Backfill

May 2017 3

• QOS
• Accounting
• Health Check
• Troubleshooting

Concept: What is Slurm?

Simple Linux Utility for Resource Management:
• Anything but simple...
• Resource manager and scheduler
• Originally developed at LLNL (Lawrence Livermore)
• GPL v2
• Commercial support/development available
• Active user community
• Core development by SchedMD
• Other major contributors exist
• Built for scale and fault tolerance
• Plugin-based: lots of plugins to modify Slurm behavior for your needs

May 2017 4

BYU's Scheduler History

• BYU has run several scheduling systems through its HPC history.
• Moab/Torque was the primary scheduling system for many years.
• Slurm replaced Moab/Torque as BYU's sole scheduler in January 2013.
• BYU has now contributed Slurm patches, some small and some large:

• New fair share algorithm: LEVEL_BASED (depreciated now).
• cgroup out-of-memory notification in job output.
• Pam-slurm-adopt pam module for process control with cgroups.
• Script to generate a file equivalent to PBS_NODEFILE.
• Optionally charge for CPU equivalents instead of just CPUs.

May 2017 5

University of Utah's Scheduler History

• Utah has also run over the years several batch and or scheduling systems
including DQS, NQS, LoadLeveler, PBS/PBSPro/OpenPBS/Torque,
Maui/Moab, and SLURM.

• Maui/OpenPBS/QBank -> Moab/Torque/(Gold/MAM) were primary
scheduling and allocation enforcement systems between 1999-2015.

• Initial testing of Slurm started Fall 2014 focusing the support for
elastic/cloud (private) resources.

• Completed transition to Slurm from Moab/Torque as Utah’s batch system
& scheduler of choice April 2015.

May 2017 6

Terminology

• Partition – A set, “queue” or pool of nodes that make up a “Cluster”.
• Cluster –Multiple Slurm “clusters” can be managed by one slurmdbd; one

slurmctld per cluster.
• Job step – a suballocation within a job.

• E.g. Job 1234 is allocated 12 nodes. It launches 4 job steps, each running 3 nodes.
• Similar to subletting an apartment.

• Sublet the whole place or just a room or two.
• User – A user (“Bob” has a Slurm “user”: “bob”).
• Account – A group of users and subaccounts.
• QOS – (Quality of Service) - Priority, Preemption, Policies, and limits.
• Association – the combination of user, account, qos, partition, and

cluster.
• A user can be members of multiple accounts with different limits for different

partitions and clusters, etc.

May 2017 7

Terminology: Daemons

• Daemons
• slurmctld – controller that handles scheduling, communication with nodes, etc.
• slurmdbd – (Optional) database for managing users, qos, accounts, and job

accounting records.
• communicates with MySQL or MariaDB database backend.

• slurmd – runs on each compute node and launches jobs.
• Maintains node state with slurmctld.
• Hierarchical communication between slurmd instances (for scalability).
• Launches jobs.

• slurmstepd – run by slurmd to launch a job step.
• munged – runs on all cluster nodes and authenticates RPC calls.

• https://dun.github.io/munge/ (Also available via EPEL)
• Must share a common key within the cluster or if slurmdbd is used within the pool of

clusters sharing that slurmdbd.
• slurmctld and slurmdbd can have primary and backup instances for HA.

• State synchronized through shared file system (StateSaveLocation).

May 2017 8

https://dun.github.io/munge/

Installation

• Version numbers are Ubuntu-style (e.g. 17.02.2)
• 17.02 == major version released in February 2017
• .2 == minor version

• Download official releases from schedmd.com
• git repo available at http://github.com/SchedMD/slurm

• Active development occurs at github.com; releases are tagged (git tag)
• Two main methods of installation

• ./configure && make && make install
• Build RPMs, etc

• Some distros have a package, usually “slurm-llnl”
• Version may be behind by a major release or three
• If you want to patch something, this is the hardest approach

May 2017 9

https://www.schedmd.com/downloads.php
http://github.com/SchedMD/slurm

Installation: Prep Work & Dependencies

• Create a slurm user and group locally on each node (consistent uid:gid) or
via your network service of choice (ldap, nis, …).

• No password needed, this is a service account.
• Insure package dependencies are satisfied (your exact needs may vary):

• ‘yum install openssl openssl-devel pam-devel numactl numactl-devel hwloc
hwloc-devel lua lua-devel readline-devel rrdtool-devel ncurses-devel man2html
libibmad libibumad munge munge-libs munge-devel rng-tools -y’

• Download Slurm Source:
• ‘wget https://www.schedmd.com/downloads/latest/slurm-17.02.2.tar.bz2’.

May 2017 10

https://www.schedmd.com/downloads/latest/slurm-17.02.2.tar.bz2

Installation: MUNGE Uid ‘N’ Gid Emporium

• ‘yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-
7.noarch.rpm’

• ‘yum install -y munge munge-libs munge-devel’
• A shared munge key must be created and distributed to all cluster nodes.

• ‘dd if=/dev/random bs=1 count=1024 >/etc/munge/munge.key’
• ‘chmod 400 /etc/munge/munge.key’
• Distribute in your preferred fashion this key to all cluster nodes.
• Insure permissions and ownership are correct on each node.

• Init Startup: ‘chkconfig munge on’ on each node.
• SystemD Startup: ‘systemctl enable munge’ on each node.

May 2017 11

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Installation: Non-RPM Build

• ‘tar -jxf ~/slurm-17.02.2.tar.bz2 -C /usr/local/src/’
• ‘chown -R slurm.slurm /usr/local/src/slurm-17.02.2’
• ‘cd /usr/local/src/slurm-17.02.2’
• ‘./configure --prefix=/usr/local --sysconfdir=/usr/local/etc --enable-debug

--with-hdf5 --with-hwloc’
• ‘make’ (consider adding a ‘-j16’ or other value to speed up the build?)
• ‘make install’

• Local Install:
• Note: some files such as ${sysconfdir}/slurm.conf must be kept consistent between all

nodes.
• Network Install:

• ${prefix} and ${sysconfdir} should be pointed to common network paths.

May 2017 12

Installation: Non-RPM Build

• Init Startup:
• ‘cp /usr/local/src/slurm-17.02.2/etc/init.d.slurm /etc/init.d/slurm && chkconfig --

add slurm’ on slurmd and slurmctld nodes.
• SystemD Startup:

• slurmctld node: ‘cp /usr/local/src/slurm-17.02.2/etc/slurmctld.service
/etc/systemd/system/ && systemctl enable slurmctld’

• slurmd nodes: ‘cp /usr/local/src/slurm-17.02.2/etc/slurmd.service
/etc/systemd/system/ && systemctl enable slurmd’

May 2017 13

Installation: Build RPMs

• ‘yum install rpm-build’
• ‘rpmbuild -ta ~/slurm-17.02.2.tar.bz2’
• Review output and find packages in: ‘/root/rpmbuild/RPMS/x86_64’.
• Per your clusters management method install RPMs onto cluster nodes.

• NOTE: some files such as /usr/local/etc/slurm.conf must be kept consistent
between nodes.

• Init Startup:
• ‘chkconfig slurm on’ on slurmd and slurmctld nodes.

• SystemD Startup:
• slurmctld node: ‘systemctl enable slurmctld’
• slurmd nodes: ‘systemctl enable slurmd’

May 2017 14

Configuration: slurm.conf

• Too many parameters in slurm.conf to cover everything in this session:
• Man Page: https://slurm.schedmd.com/slurm.conf.html
• Online Config Tools

• Easy Version: https://slurm.schedmd.com/configurator.easy.html
• Full Version: https://slurm.schedmd.com/configurator.html

• Sample: ‘/usr/local/src/slurm-17.02.2/etc/slurm.conf.example’
• Core components of slurm.conf:

• Cluster name, controlmachine, ports, security, timers, etc...
• State, {epi,pro}log, logging, and accounting locations, etc...
• Policies, backfill, process tracking, resource selection, task launch/control, etc...
• Accounting type(s) and storage location(s).
• ComputeMachines definitions:

• name, addr, cpu, socket, corespersocket, threadspercore, realmemory, weight, etc…
• gres (Generic Resources): gpu, mic(xeon phi), other...

• Partitions: name, membership, limits, ACLs, preempt, prio, sharing, etc...

May 2017 15

https://slurm.schedmd.com/slurm.conf.html
https://slurm.schedmd.com/configurator.easy.html
https://slurm.schedmd.com/configurator.html

Concept: Host Range Syntax

• Usable with commands and config files.
• Host range syntax is more compact, allows smaller RPC calls, easier to

read config files, etc.
• Node lists have a range syntax with [] using “,” and “-”.
• n[1-10,40-50] and n[5-20] are valid.

• Also valid: n[01-10,40-50] and n[05-20].
• Up to two ranges are allowed: n[1-100]-[1-16].

• I haven't tried this out recently so it may have increased; manpage still says two.
• Comma separated lists are allowed:

• a-[1-5]-[1-2],b-3-[1-16],b-[4-5]-[1-2,7,9]
• One negative is that it can be harder to search log files for a specific node

if it’s buried within a range.

May 2017 16

• Generic resource (GRES) scheduling is supported through a flexible plugin
mechanism. Support is currently provided for Graphics Processing Units
(GPUs) and Intel® Xeon Phi (MIC) processors.

• slurm.conf config:
• ‘GresTypes’ a comma delimited list of generic resources to be managed.

• ‘GresTypes=gpu’
• ‘Gres’ also must be defined as part of the relevant ‘NodeName’ lines.

• ‘NodeName=tux[0-7] Gres=gpu:p100:2 …’
• gres.conf config:

• ‘NodeName=tux[0-7] Name=gpu Type=p100 File=/dev/nvidia0 CPUs=0-13,28-41’
• ‘NodeName=tux[0-7] Name=gpu Type=p100 File=/dev/nvidia1 CPUs=14-27,42-

55’
• For most it is important that you match the Gres(GPU) device to the appropriate

CPU cores/socket to maximize performance. Especially when cgroups are in use.

May 2017 17

Configuration: gres.conf

Info: Documentation & Resources

• Slurm is too configurable to cover everything here.
• Online Manpages and Documentation:

• https://slurm.schedmd.com/documentation.html
• https://slurm.schedmd.com/man_index.html

• Mailing Lists:
• https://slurm.schedmd.com/mail.html

• Annual user group meeting:
• https://slurm.schedmd.com/meetings.html

• New features are added frequently.

May 2017 18

https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/man_index.html
https://slurm.schedmd.com/mail.html
https://slurm.schedmd.com/meetings.html

Commands: Overview

• squeue - view the queue.
• sbatch - submit a batch job.
• salloc - launch an interactive job.
• srun - two uses:

• outside of a job - run a command
through the scheduler on compute
node(s) and print the output to
stdout.

• inside of a job - launch a job step
(i.e. suballocation) and print to the
job's stdout.

• sacct - view job accounting
information.

May 2017 19

• sacctmgr - manage users and
accounts including limits.

• sstat - view job step information.
• sreport - view reports about

usage.
• sinfo - information on partitions

and nodes.
• sview - simple gui interface.
• sprio - display idle job prio details.
• scancel - signal or cancel jobs.
• sdiag - display slurmctld

performance metrics.

Commands: sinfo

• Sinfo - View information about nodes and partitions.
• Most parameters can be combined together to form very specific queries.
• By default groups nodes of similar config and state and displays them as a

‘range’.
• ‘sinfo -N ...’ - Will instead list nodes one per line.

• Query nodes by state: alloc, comp, down, drain, err, fail, idle, maint, mix, etc…
• ‘sinfo -t ${state}’

• ‘sinfo -p ${partition}’ - List nodes of a particular partition.
• ‘sinfo -T’ - Display reservation names, state, start/end time, duration, nodelist.
• ‘sinfo -R’ - Display reasons nodes are in state down, drain, fail, or failing state.
• Customize output format: Example - Compact state per type per partition.

• ‘sinfo -o "%20P %5D %14F %8z %10m %10d %11l %16f %N %20G"’
PARTITION NODES NODES(A/I/O/T) S:C:T MEMORY TMP_DISK TIMELIMIT AVAIL_FEATURES NODELIST GRES
kingspeak* 32 32/0/0/32 2:8:2 64000 340000 3-00:00:00 chpc,c16 kp[001-032] (null)
kingspeak* 16 16/0/0/16 2:10:2 64000+ 820000+ 3-00:00:00 chpc,c20 kp[110-111,158-167,196-199]
(null)
ucgd-kp 28 27/1/0/28 2:10:2 128000 690000 14-00:00:00 ucgd,c20 kp[168-195] (null)
ucgd-kp 28 21/7/0/28 2:12:2 128000 690000 14-00:00:00 ucgd,c24 kp[200-227] (null)
soc-gpu-kp 4 3/1/0/4 2:14:2 256000 1800000 14-00:00:00 soc,tesla,p100,c kp[359-362] gpu:p100:2

May 2017 20

Commands: squeue

• Squeue - View information about current jobs in the scheduling queue.
• Most parameters can be combined together to form very specific queries.
• Query jobs in queue by state: pending, running, completing, preempted, etc…

• ‘squeue -t ${state}’
• ‘squeue --start’ - Report the expected start time and resources to be allocated.
• ‘squeue -w ${hostlist}’ - Query jobs associated with nodes in ${hostlist}.
• ‘squeue -R ${resname}’ - Query jobs associated with reservation ${resname}.
• ‘squeue -u ${user} -p ${partition} -A ${account} -q ${qos}’ - Job credential query.
• Customize output format:

• ‘squeue -o "%8i %12j %4t %9u %15q %12a %10g %12P %8Q %5D %11l %11L %R" --sort=-p,i’
JOBID NAME ST USER QOS ACCOUNT GROUP PARTITION PRIORITY NODES TIME_LIMIT TIME_LEFT NODELIST(REASON)
2648929 run.slr R u1069216 kingspeak ardakani ardakani kingspeak 109666 1 3-00:00:00 21:17:14 kp166
2653976 jobname.err R u0884302 mah-kp mah-kp mah mah-kp 104095 1 7-04:00:00 6-09:57:59 kp294
2653781 jobname.err R u0549046 kingspeak mah mah kingspeak 103691 1 3-00:00:00 2-03:43:12 kp163
2655186 jobname.err R u0661781 wjohnson-kp wjohnson-kp wjohnson wjohnson-kp 101015 1 3-00:00:00 2-19:03:39 kp106
2653640 wrf.slurm PD u0952282 kingspeak zipser zipser kingspeak 100528 16 2:00:00 2:00:00 (Resources)
2653646 wrf.slurm PD u0952282 kingspeak zipser zipser kingspeak 100528 16 2:00:00 2:00:00 (Priority)

May 2017 21

Commands: squeue (Example)

• What if I want to see all running jobs:
• On nodes ‘ash[001-032]’...
• Submitted by all users in account ‘smithp-ash’...
• Using QOS ‘smithp-ash-res’...
• With a certain job name, ‘BSFCase25Rest’...
• In reservation ‘DAT-u0659711_HPC-4716’...
• But only show the job ID and the list of nodes the jobs are assigned..
• Then sort it by time remaining then descending by job ID?
• There's a command for that!

• ‘squeue -t running -w ash[001-032] -A smithp-ash -q smithp-ash-res -n BSFCase25Rest -R
DAT-u0659711_HPC-4716 -o "%.10i %N" -S +L,-i’

JOBID NODELIST
1788443 ash[001-245]

May 2017 22

Commands: sbatch (salloc & srun)

• sbatch parses #SBATCH in a job script and accepts parameters on CLI
• salloc and srun accept most of the same options
• Short and long versions exist for most options

• -N 2 # node count
• -n 8 # task count

• default behavior is to try loading up fewer nodes as much as possible rather than
spreading tasks

• -t 2-04:30:00 # time limit in d-h:m:s, d-h, h:m:s, h:m, or m
• -p p1 # partition name(s): can list multiple partitions
• --qos=standby # QOS to use
• --mem=24G # memory per node
• --mem-per-cpu=2G # memory per CPU
• -a 1-1000 # job array

May 2017 23

Commands: sbatch (salloc & srun)

• LOTS of options: read the manpages
• Easy way to learn/teach the syntax: BYU's Job Script Generator

• Web based tool that can create Slurm or PBS job submission scripts.
• Demo: https://byuhpc.github.io/BYUJobScriptGenerator/
• Code: https://github.com/BYUHPC/BYUJobScriptGenerator/
• LGPL v3, Javascript, available on Github
• Slurm and PBS syntax
• May need modification by your site

May 2017 24

https://byuhpc.github.io/BYUJobScriptGenerator/
https://github.com/BYUHPC/BYUJobScriptGenerator/

Info: BYU Script Generator Example

May 2017 25

Info: BYU Script Generator Example

May 2017 26

Commands: sview

• Graphical frontend providing ‘sinfo’, ‘squeue’, and other information.

May 2017 27

Concept: Job Arrays

• Mechanism for submitting and managing collections of similar jobs.
• Common size, time, limits, etc…

• $SLURM_ARRAY_TASK_ID stores the job's index number
• An individual job looks like 1234_7 where

${SLURM_JOB_ID}_${SLURM_ARRAY_TASK_ID}
• Range syntax support:

• ‘sbatch --array=0-31’ - Step through range.
• ‘sbatch --array=1,3,5,7’ - Step through specific list.
• ‘sbatch --array=1-7:2’ - Step through range by 2’s.
• ‘sbatch --array=0-15%4’ - Step through range, but limit concurrent running tasks.

• Interaction with array:
• ‘scancel 1234’ - Cancel whole array.
• ‘scancel 1234_7’ - Cancel a single job in the array.
• ‘scancel 1234_[1-3]’ - Cancel a range within the array.

May 2017 28

Concept: Resource Enforcement

• Slurm can enforce resource requests through the OS.
• Linux CGroups offer the best and most complete enforcement.

• Must insure we do not allow remote commands to “escape” cgroup control.
• https://github.com/SchedMD/slurm/tree/master/contribs/pam_slurm_adopt

• CPU
• task/cgroup – uses cpuset cgroup (best)
• task/affinity – pins a task using sched_setaffinity (good but a user can escape it)

• Memory
• memory cgroup (best)
• polling (polling-based: race conditions, better than nothing; users can escape it)

• GRES - GPU, MIC(Xeon PHI)
• ENV variables set by slurm.

• CUDA_VISIBLE_DEVICES
• Prolog/Epilog scripts.

May 2017 29

https://github.com/SchedMD/slurm/tree/master/contribs/pam_slurm_adopt

Concept: QOS

• A QOS can be used to:
• Modify job priorities based on QOS priority.
• Configure preemption.
• Allow access to dedicated resources.
• Override or impose limits.
• Change “charge rate” (a.k.a. UsageThreshold).

• A QOS can have limits: per QOS and per user per QOS.
• List existing QOS:

• ‘sacctmgr -p list qos‘
• Modify existing QOS:

• ‘sacctmgr modify qos long set MaxWall=14-0’

May 2017 30

Concept: QOS Preemption

• Preemption is easy to configure:
• Trigger based on QOS or Partition priority, or from Job Start Time (youngest first).
• QOS based preemption example:

• slurm.conf:
• Define default behavior, can be overridden at partition/qos.
• ‘PreemptMode=CANCEL’
• ‘PreemptType=priority/qos’

• ‘sacctmgr modify qos high set priority=100000 preemptmode=cancel preempt=normal,low’
• ‘sacctmgr modify qos normal set priority=1000 preemptmode=cancel preempt=low’
• ‘sacctmgr modify qos normal set priority=1 preemptmode=cancel’

• GraceTime (optional):
• Guarantees a minimum runtime for preempted jobs.
• Can be set at either/both partition or qos.

• ‘GraceTime=00:15:00’

May 2017 31

Concept: Job Prioritization

• Priority/multifactor plugin uses different components and related
weights.

• Priority = sum(component_weight_int * component_value_float)
• Weights are integers and the values themselves are floats (double?).
• A jobs priority is an integer that ranges between 0 and 4294967295.

• Priority Factors :
• Age: Length of time a job has been in queue and eligible to run.

• Can be capped with ‘PriorityMaxAge’.
• Fairshare: A dynamic value influenced by recent usage and assigned shares.
• Job Size: The number of nodes or cpus a job requests. Can favor larger or

smaller.
• Can also be further adjusted with ‘SMALL_RELATIVE_TO_TIME’ to help small short jobs.

• Partition: Flat value that is then integrated into a jobs overall priority.
• QOS: Flat value that is then integrated into a jobs overall priority.
• TRES: Each TRES type can have it’s own priority factor and be included in a jobs

overall priority score.

May 2017 32

Concept: Job Prioritization - Example

• Let's say the weights are:
• PriorityWeightAge=0
• PriorityWeightFairshare=10000 (ten thousand)
• PriorityWeightJobSize=0
• PriorityWeightPartition=0
• PriorityWeightQOS=10000 (ten thousand)

• QOS Priorities are:
• high=5
• med=2
• low=0

• userbob (fairshare=0.23) submits a job in qos “med” (qos_priority=2):
• priority = (PriorityWeightFairshare * .23) + (PriorityWeightQOS * 2 /

MAX(qos_priority)))
• priority = (10000 * .23) + (10000 * (2/5)) = 6300

May 2017 33

Concept: Backfill

• Slurm considers pending jobs in priority order, determining when and
where each will start, taking into consideration the possibility of job
preemption, generic resource (GRES) requirements, memory
requirements, etc. If the job under consideration can start immediately
without impacting the expected start time of any higher priority job, then
it does so.

• Slurm’s backfill scheduling plugin is loaded by default and does not
require a lot of hand holding in most cases.

• Backfill scheduling is a time consuming operation. Depending on the
characteristics of your sites queue you may find need to tune things.

• A list of ‘SchedulerParameters’ configuration parameters related to
backfill scheduling can be found in the man page for slurm.conf.

May 2017 34

https://slurm.schedmd.com/slurm.conf.html

Concept: Fair Tree Fairshare Algorithm

• Fair Tree prioritizes users such that if accounts A and B are siblings and A
has a higher fairshare factor than B, all children of A will have higher
fairshare factors than all children of B.

• Benefits:
• Higher prio account users have higher fairshare factor than users from lower prio accounts.
• Users are sorted and ranked to prevent errors due to precision loss.
• Account coordinators cannot accidentally harm the priority of their users relative to users in

other accounts.
• Level Fairshare Calculation: LF = S / U

• Under-served associations will have a value greater than 1.0. Over-served associations will
have a value between 0.0 and 1.0.

• LF: The association’s Level Fairshare.
• S: Shares Norm, the associations assigned shared normalized to the shares assigned to itself

and it’s siblings: S = Sraw[self] / Sraw[self+siblibgs]
• U: Effective Usage, U is the associations usage normalized to the account’s usage: U =

Uraw[self] / Uraw[self+siblings]

May 2017 35

Concept: Reservations

• Slurm has the ability to reserve resources for jobs by select users and/or
accounts. Reservations can also be used to for system maintenance.

• User Reservation Example:
• ‘scontrol create reservation reservationname=DAT_u0104663 starttime=2017-07-

04T08:00:00 duration=14-00:00:00 user=u0104663 nodecnt=128’
• Jobs that are to use a reservation must add this flag: ‘--reservation=${RESNAME}’

• ‘sbatch --reservation=DAT_u0104663 -N128 my.slurm.script’
• How can I allow jobs using a reservation to exceed the usual wall clock limit?

• Create a QOS for reservations and set ‘Flags=PartitionTimeLimit,RequiresReservation’, also
set ‘MaxWall=${MaxResJobTimeLimit}’

• Flag ‘RequiresReservation’ will prevent this QOS from being used when there is no reservation.
• Flag ‘PartitionTimeLimit’ will allow jobs of this QOS to override the partitions usual time limit.

• Reservations for system maintenance:
• ‘scontrol create reservation reservationname=SprintDowntime_May1st starttime=2017-05-

01T06:00:00 duration=infinite nodes=all flags=maint,ignore_jobs users=root’

May 2017 36

Info: Additional Job Log Record

• In addition to using slurmdbd to archive job records you can also
configure slurm to save a ‘similar’ record in a parsable text file.

• slurm.conf:
• ‘JobCompType=jobcomp/filetxt’
• ‘JobCompLog=/var/log/slurm/slurm.job.log’

• Value of text file for quick info
• Lookup last user(s) of a node(s).
• See or review job exit codes’
• Look for common events or other usage patterns.
• Other...
• NOTE: Nodes are listed in ‘ranges’ which can at time make simple parsing more difficult.

• JobCompLog parsing script:
• Written by Robben Migacz (A student employee at Univ of Utah, CHPC):
• https://github.com/robbenmigacz/SlurmJobLogQuery
• Offers a number of search parameters and conditions to simplify usage.

May 2017 37

https://github.com/robbenmigacz/SlurmJobLogQuery

Concept: Accounting with slurmdbd

• Slurmdbd is an optional daemon that provides a database backed accounting
framework for Slurm:
• Preferred DB backends are MySQL or MariaDB.
• Current and historical records are stored for reporting, trending, etc…
• Clusters, accounts, users, qos, and their associations can be defined in a

centralized location.
• Accounts, qos, or users can be used as ACL points for partitions and reservations.
• Qos definitions can define priority, default/override limits, fairshare, preemption, etc...
• Admin and Operator privilege levels can be defined.
• Comprehensive associations can be made between clusters, accounts, qos, users.

• Associations can also define additional limits, fairshare, def qos, available qos, etc…
• Can be integrated with XDMoD (open.xdmod.org) to provide rich resource

utilization reports via a web portal.
• Can be used to support an XSEDE (www.xsede.org) like allocation system.

May 2017 38

http://open.xdmod.org/
https://www.xsede.org/

Info: XDMoD Resource Utilization Reports

May 2017 39

Concept: Account Coordinator

• An account coordinator can do the following for users and subaccounts.
under the account:

• Set limits (CPUs, nodes, walltime, etc.).
• Modify fairshare “Shares” to favor/penalize certain users.
• Grant/revoke access to a QOS.
• Hold and cancel jobs.

• BYU sets faculty to be account coordinators for their accounts.
• End-user documentation:

https://marylou.byu.edu/documentation/slurm/account-coord.

May 2017 40

https://marylou.byu.edu/documentation/slurm/account-coord

Concept: Node Health Check

• Slurm supports a “node health check” framework:
• slurm.conf config:

• ‘HealthCheckNodeState=${statelist}’
• List of node states that ‘HeathCheckProgram” is called. Multiple states can be listed.
• Supported states: ALLOC, ANY, CYCLE, IDLE, and/or MIXED.

• ‘HealthCheckInterval=${seconds}’
• Interval in seconds between executions of ‘HealthCheckProgram’.

• ‘HealthCheckProgram=/path/to/nhc.sh’
• Fully qualified pathname of script to be executed as root.
• Run on all nodes NOT in NOT_RESPONDING state.
• Program can verify node health and DRAIN a node or send email if a problem is detected.
• Will kill ‘HealthCheckProgram’ if it does not terminate normally within 60 seconds.

• LBNL Node Health Check is one possible tool to use as the ‘HealthCheckProgram’.
• Formerly known as: Warewulf Node Health Check
• https://github.com/mej/nhc

May 2017 41

https://github.com/mej/nhc

Concept: Troubleshooting

• What to do and where to start when things go wrong?
• First, and possibly the most important, is to know where your logs are.

• Slurm can use your system's log facility (syslog/rsyslog) to locally and or remotely log.
• Log/debug levels can be increased when needed with options in slurm.conf:

• ‘DebugFlags’
• ‘SlurmctldDebug’
• ‘SlurmdDebug’
• ‘SlurmSchedLogLevel’

• slurmctld - Involved in most activities so often proves to be a good first place to look.
• slurmd - Each node’s slurmd logs often capture node or peer level issues.
• munge - Since munge is needed on all system running slurm daemons or where slurm

commands are run these logs can be key in identifying if there is an authentication issue.
• For example, munge can be quite sensitive to system clock consistency.

• slurmdbd - Review slurmctld, slurmdbd, and back end database logs for issues.
• Try to understand the scope of the issue you’re facing. Narrow things

down to the obvious involved components and start there.
• Keep detailed notes as you get a feel for troubleshooting things.

May 2017 42

Concept: Troubleshooting

• Schedmd’s Ticket System: https://bugs.schedmd.com/
• Even if you do not have a support contract you may find valuable information by

searching existing/previous tickets other have submitted.
• Additional Info: https://slurm.schedmd.com/troubleshoot.html

May 2017 43

https://bugs.schedmd.com/
https://slurm.schedmd.com/troubleshoot.html

Concept: Slurm Elastic / Cloud / PowerSave

• Slurm has built in support for dynamic resources from both the
Elastic/Cloud sense as well as for Power Saving modes of operation.

• Why?
• Ability to burst to private or public cloud resources when needs exceed capacity.
• Limit or reduce power consumption for resources left idle or to maintain power

budget requirements.
• Maybe you want to share a pool of resources between your HPC systems and

some other usage cases.
• Need to be able to boot nodes into alternate configs based on job requirements.

• Clusters can be composed of either or both dedicated and dynamic
resources.

• Flexible boot/provision mechanism… You get to write your own! ;)

May 2017 44

Concept: Slurm Elastic / Cloud / PowerSave

• Key configuration points:
• ‘SuspendProgram’

deprovision resources.
• ‘ResumeProgram’

provision resources.
• Various timers…
• ‘SuspendTime’ to

deprovision idle
resources.

• Tail-End reservations.
• Synchronize slurm and

providor states.
• Insuring nodes provision

to a “healthy” state.

May 2017 45

Info: OSG & Slurm Integration

• A CPU cycle is a terrible thing to waste!
• More info/documentation at: www.opensciencegrid.org
• OSG can integrated into your Slurm based cluster:

• Maintain full local control of job prioritization and usage.
• OSG “Glidein” jobs are submitted to slurm.
• Glidein jobs starts up OSG framework on nodes and processes OSG workloads.
• Able to run as low prio backfill workloads with preemption.
• HTC vs HPC focused.

• Share what would be otherwise wasted/unused cycles with others.
• Harvest cycles from other sources for your HTC/OSG friendly workloads.

May 2017 46

https://www.opensciencegrid.org/

Info: User Education

• Slurm (mostly) speaks #PBS and has many wrapper scripts.
• Maybe this is sufficient?
• BYU switched from Moab/Torque to Slurm before notifying users of the change.

• Yes, they were that crazy. Yes, it worked great for >95% of use cases, which was their
target. The other options/commands were esoteric and silently ignored by Moab/Torque
anyway.

• Slurm/PBS Script Generator available: github.com/BYUHPC
• LGPL v3, demo linked to from github

• https://slurm.schedmd.com/tutorials.html
• “Introduction to Slurm Tools” video is linked from there

• https://www.chpc.utah.edu/documentation/software/slurm.php
• https://marylou.byu.edu/documentation/slurm/commands
• Many other institutions have quality slurm user guides just a google

search away.

May 2017 47

https://github.com/BYUHPC
https://slurm.schedmd.com/tutorials.html
https://www.chpc.utah.edu/documentation/software/slurm.php
https://marylou.byu.edu/documentation/slurm/commands

Info: Support

• SchedMD: https://www.schedmd.com/
• Excellent commercial support option from the original developers.
• Bugfixes typically committed to github within a day.

• Other support vendors listed on Slurm's Wikipedia page.
• Usually tied to a specific hardware vendor or as part of a larger software

installation.
• slurm-dev mailing list: https://slurm.schedmd.com/mail.html

• You should subscribe.
• “Hand holding” is extremely rare.
• Don't expect to use slurm-dev for support.

May 2017 48

https://www.schedmd.com/
https://slurm.schedmd.com/mail.html

Closing & Contact info:

Thank you for your participation!
Any Questions?

Brian Haymore, Sr IT Arch - HPC
Center for High Performance Computing, University of Utah

brian.haymore@utah.edu

May 2017 49

May 2017 50

	Linux Clusters Institute: Scheduling and Resource Management
	Slide Number 2
	Slurm Workload Manager
	Concept: What is Slurm?
	BYU's Scheduler History
	University of Utah's Scheduler History
	Terminology
	Terminology: Daemons
	Installation
	Installation: Prep Work & Dependencies
	Installation: MUNGE Uid ‘N’ Gid Emporium
	Installation: Non-RPM Build
	Installation: Non-RPM Build
	Installation: Build RPMs
	Configuration: slurm.conf
	Concept: Host Range Syntax
	Configuration: gres.conf
	Info: Documentation & Resources
	Commands: Overview
	Commands: sinfo
	Commands: squeue
	Commands: squeue (Example)
	Commands: sbatch (salloc & srun)
	Commands: sbatch (salloc & srun)
	Info: BYU Script Generator Example
	Info: BYU Script Generator Example
	Commands: sview
	Concept: Job Arrays
	Concept: Resource Enforcement
	Concept: QOS
	Concept: QOS Preemption
	Concept: Job Prioritization
	Concept: Job Prioritization - Example
	Concept: Backfill
	Concept: Fair Tree Fairshare Algorithm
	Concept: Reservations
	Info: Additional Job Log Record
	Concept: Accounting with slurmdbd
	Info: XDMoD Resource Utilization Reports
	Concept: Account Coordinator
	Concept: Node Health Check
	Concept: Troubleshooting
	Concept: Troubleshooting
	Concept: Slurm Elastic / Cloud / PowerSave
	Concept: Slurm Elastic / Cloud / PowerSave
	Info: OSG & Slurm Integration
	Info: User Education
	Info: Support
	Closing & Contact info:
	Slide Number 50

