



## Linux Clusters Institute: Tiered Storage

Georgia Tech, August 15<sup>th</sup> – 18<sup>th</sup> 2017

J.D. Maloney | Storage Engineer National Center for Supercomputing Applications (NCSA) malone12@illinois.edu





## Tiered Storage: What is it & Why



August 15th-18th 2017



# The Concept - Tiers

- A storage tier is a group of storage media with the same properties and characteristics, <u>some</u> examples:
  - SSDs as a Fast Tier
  - HDDs for a slower Tier
  - Tape for an archive Tier
- Different tiers of data host different types or classifications of data, for example:
  - Certain directories live in certain tiers
  - Data with certain properties live in certain tiers
- Each of the tiers offers a different set of characteristics that's beneficial in different circumstances





# The Concept - HSM

- While data movement between tiers can be done manually, automatic movement is most desired
- In order for automated migrations to take place the file system needs to support an HSM (Hierarchical Storage Manager)
- Based on given policies data is migrated between the different storage tiers automatically
  - Ready on fast tiers when the data is needed promptly
  - Pushed down to slower levels of storage for files that are rarely used
- Both Spectrum Scale (GPFS) and Lustre support HSM
  - Built into Spectrum Scale
  - Built into Lustre, but driven from external Robinhood System







# What's the appeal?

- So what's the motivation behind this tactic, what's the benefit?...It's two fold:
  - Performance
  - Cost
- You can get the performance of fast disk such as SSDs for a lot of your I/O
- Since most of your capacity is in slower media the total system price can be kept lower
- Gets you close to the best of both worlds!





## What's Old is New

• We've seen this before, but in the context of a node's storage access

| Location       | register | L1       | L2        | L3 | DRAM | HDD  |
|----------------|----------|----------|-----------|----|------|------|
| Size           | 64 bits  | 64 bytes | 128 bytes |    | 4GB  | 1TB  |
| Latency cycles | 1        | 4        | 12        | 50 | 10^2 | 10^4 |





# The Challenges

- If it was easy, everyone would be doing it
- Getting data in the right place at the right time can be tricky
  - Easier to handle on two tier SSD/HDD implementations
  - Harder to work with when you add in another tier...especially tape
- With ultra slow, but really low cost tiers, staging requests need to be given well in advance of need for the data
- Data needs to be able to flush out of the fastest tier quick enough to accommodate next round of data
- Depending on size of the fast tier, may not be able to hold all necessary data – can lead to data flapping back and forth between two tiers





# The Challenges (cont)

- Highest level of the system needs to know about where all the data is
  - Source of truth needs to be kept somewhere
  - Can be a large burden on that tier of storage to track what tier each file is in
- Ensuring QOS for other I/O on the system
  - We want this movement to stay out of the way of production work as much as possible
- Maintaining data integrity as files move between different systems
- Handling crashes gracefully when they occur so system doesn't lose track of where data is living





# List of Benefits

- Gives your system the performance (bandwidth, IOPs) of high speed media
- Keeps system costs lower/GB by leveraging cheaper capacity tiers for bulk data storage and archive
- Efficient use of resources
- Unlocks access to features of multiple different storage technologies within the same system
- Increases resources for users so they can increase their use of the system to aid in their work





# List of Side-Effects

- Increased system complexity, and sometimes points of failure
- Need to use file system bandwidth for data movement unrelated to the workload(s) being run
- Mandate to coordinate data needs to ensure data availability at proper times
- Need to track file tier location at all times
- Additional level of acumen to manage different system types that are combined together





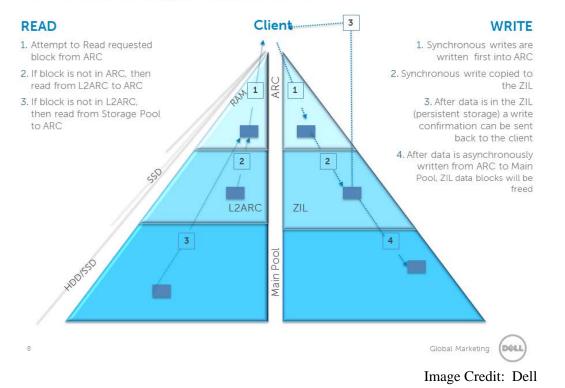
## **Current Implementations**



August 15th-18th 2017



# Locally with ZFS


- While in general HPC is interested in tier storage at the macro level, important to note ZFS does this on a single machine level
  - Improved capability than XFS or EXT4 file systems in terms of performance
- Memory flushing to disk sequentially behaves like a Burst Buffer does on large parallel file systems
- One of the reasons it's a growingly popular FS to put underneath file systems such as Lustre
  - That benefit from ZFS will show itself too in the Lustre performance in certain cases





# Locally with ZFS

#### **Tiered Storage Approach**









- Support for tiered storage in Spectrum Scale (GPFS) has been around for a long time in the file system
- Spectrum Scale supports the notion of "storage pools"
- NSDs are each assigned to a given storage pool that represents the characteristics of the NSD
- The movement of data between the tiers of disk can be driven manually
  - Through normal restripe procedures, marking NSDs read-only, etc.
- Big ability is to drive data movement through the built in policy engine





- Support for tiered storage in Spectrum Scale (GPFS) has been around for a long time in the file system
- Spectrum Scale supports the notion of "storage pools"
- NSDs are each assigned to a given storage pool that represents the characteristics of the NSD
- The movement of data between the tiers of disk can be driven manually
  - Through normal restripe procedures, marking NSDs read-only, etc.
- Big ability is to drive data movement through the build in policy engine





#### **Client Based Storage Tiering**

- LROC
  - Local Read-Only Cache
  - Sits in client node, can be single non-redundant flash device
  - Expansion of page pool in read respects
    - Does consume some page pool by existing but overall big gain in capacity
    - Not meant to replace page pool
  - Very helpful in repeated-read workloads
- HAWC
  - Highly Available Write Cache
  - Sits in client node, should be redundant flash device
    - Failure of HAWC could lead to loss of data not flushed to PFS
  - Absorbs write bursts to the file system







- Tons of flexibility
- Well implemented into the file system and fairly easy to manage with written policies
- Integrates with other IBM protects such as Spectrum Protect (formerly known as TSM)
- Supports tape tiers, per above, which is not a trivial task to handle
  - Scale and file churn can be burdensome here, depending on file system environment, may not be a good option
- One of the most well included HSM options available in HPC at this time







### Lustre

- Integrated into the file system natively, check out the lfs hsm command set
- Lustre keeps track of the archive state of all objects on the file system so it knows where they are
- Requires a copy tool to interface with the external storage target, hooks allow Lustre to push and pull data
- Coordination is done with the file system MDS to notify of data and call out to get data that is needed by the file system
- Benefit is that Lustre doesn't need to know underlying external file store, just needs to be able to talk to it





### Lustre HSM Architecture

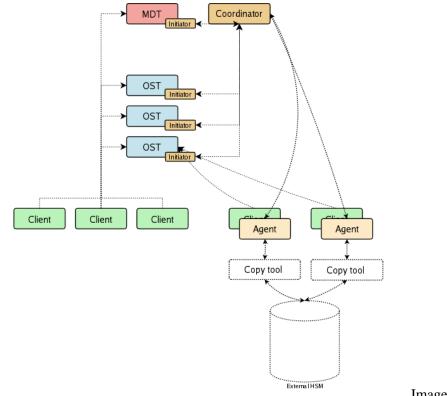



Image Credit: lustre.org



August 15th-18th 2017



### Lustre

- Driving the data between the tiers can be done manually from the CLI
  - See the lfs hsm commands
- While there is no policy engine built into Lustre itself, Robinhood can be used to drive these migrations
- Requires change logs to be enabled on the file system and they need to function reliably to prevent the need of a full scan to find all the files
- No support for tiers within the Lustre file system
  - Eg. some OSTs being SSD vs PMR HDD vs SMR HDD





# Support in Other File Systems

#### • Ceph

- Hits this with different pools
- Can have a fast (probably all SSD pool) that acts as a cache tier for a slower pool beneath it
- Works best for workloads with high read rates of recently written objects
- Built in support

#### • GlusterFS

- Built in tier support for single volumes
- Volume can have fast bricks and slow bricks and data is moved between the two based on their use frequency and last access time
- Done automatically by the file system, but can be manipulated by tunable parameters
- File location is transparent to the application, appears as though it's in normal spot







# Support in Other File Systems

#### • Panasas

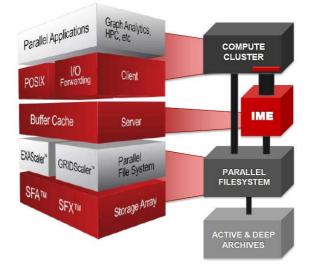
- Feature of PanFS for a while
- Available via hybrid storage tiers
- Uses SSDs to accelerate rotational media

### • BeeGFS

- No current support for Tiered Storage...yet
- Support set to come later this year (2017)
- Will come in the form of storage pools similar to how Spectrum Scale handles tiered data






- Dealing with putting the logic into the file systems themselves can be challenging and time consuming
  - Puts all the effort on the software side of things
- Second approach is putting tier intelligence in the hardware appliances without really telling the file system
- This approach is used in products like Cray's DataWarp, DDN's IME, and Seagate with their Nytro accelerated appliances
- Is really best for moving data between flash and spinning hard drive tiers
  - Not really for pushing data into and out of slower tiers like tape

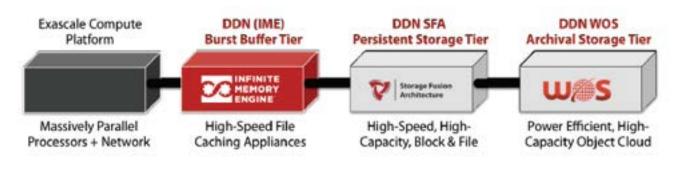


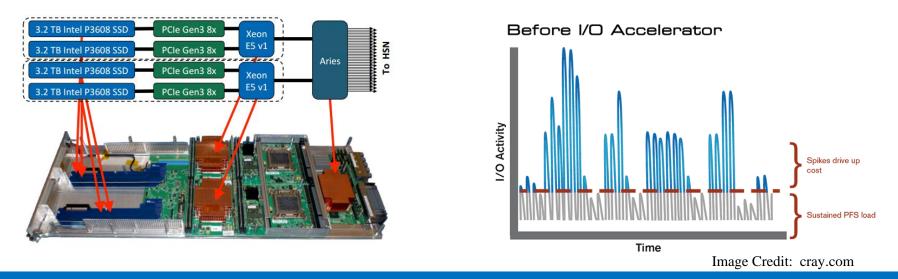




- DDN IME leverages a separate storage appliance filled with flash to buffer I/O between the compute system and the parallel file system
- Has native IME libraries to offer optimized I/O performance
- Works with both Lustre and Spectrum Scale







Image Credit: ddn.com







- Cray Burst buffer technology puts flash accelerator nodes into the system to intercept I/O bursts and smooth it out on it's way to the parallel file system
- Works with Lustre, Spectrum Scale, and PanFS









- Seagate Nytro based appliances (L300N and G300N) integrate both rotational media and flash into the appliance itself
- Uses the Nytro Intelligent I/O manager to absorb high I/O and write it to disk and a consistent sequential manner
  - Gives disks best I/O possible to improve their performance
  - Handles applications with poor I/O patterns
- Again just a Flash/HDD tiered system, but one that is transparent to filesystem and user application









# Looking Toward the Future



August 15th-18th 2017



# Tackling the Challenges

- Using job scheduling tools to coordinate data movement between tiers
  - Job dependencies that run staging requests for data that have to be completed before scheduler launches the actual job
- Ensuring robust bandwidth between tiers to reduce the ability of data migrations constraining I/O bandwidth
- Fine tuning data movement policies to ensure data is moved only when necessary and in an efficient manner as possible





# Tackling the Challenges

- Leveraging new storage medias
  - Even within rotational media there are different technologies with different characteristics: PMR, SMR, HAMR
  - NVME Flash
  - 3D XPoint Technology
- Leveraging more distributed name space abilities
  - DNE 2 in Lustre improved metadata performance and thus HSM performance abilities
  - New GlusterFS core engine will improve performance and scalability
- More software development from companies
  - Companies are putting effort in, especially slow tier vendors to write bridge code to allow file systems like Lustre or Spectrum Scale to talk to their deep storage appliance







## **HSM Projections**

- Increase in the number of storage tiers in the stack, we're already seeing it
  - Memory
  - In-node flash
  - File System Flash
  - HDD
  - SMR
  - Object
  - Tape
- With tier count increasing their will be an increase in complexity in terms of tracking where data sits





# **HSM Projections**

- Migration away from tape based storage tiers for all but some of the largest systems
  - Tape while low in cost, requires specialized skills to administer and maintain
  - Finding talent to run the systems is becoming more difficult
  - Economies of scale with falling disk prices means that more data is necessary to justify the cost of tape
- More file systems gaining features related to HSM
  - Very popular feature and is a big bonus to a file system that can support it well and reliably
  - Some of the "smaller" file systems will/have start seeing better adoption





# **HSM Projections**

- Flipping the paradigm over and having the lower storage tier hold file state of all objects in the file system
- Larger capacity tier could have easier time handling the file state information
- When data is needed up on the fast storage tier, necessary files are pushed up into hot storage space
  - Once job is completed, new and changed files are then merged back into the capacity tier below
  - Conceptually similar to how git control works
  - Simplifies tracking of the files state, but could be complex in the ability to merge files back into lower level correctly





# Acknowledgements

- Members of the SET group at NCSA for slide content & review
- Members of the steering committee for slide review







### Questions



August 15th-18th 2017



