
Linux Clusters Institute:
ZFS Concepts, Features, Administration

J.D. Maloney | Storage Engineer
National Center for Supercomputing Applications (NCSA)

malone12@illinois.edu

Georgia Tech, August 15th – 18th 2017

Quick History of ZFS
• Developed by Sun Microsystems

• Released initially in late 2005 with OpenSolaris
• Oracle (owner of Sun), stopped release of source code in 2010
• This prompted the formation of OpenZFS which is prevalent to

this day
• Sometimes called the Zettabyte File System
• Focus on data integrity and reliability

August 15th-18th 2017 2

Why ZFS?
• Popular within the HPC community
• Building block for other file systems

• Some large parallel file systems (Lustre, Gluster, others) can run on top of
ZFS

• Leverage it to combine disks to create LUNs without expensive controllers

• Fairly mature file system
• Has strengths in data integrity and validity that are

important for reliable file systems
• Flexibility and fault tolerance

August 15th-18th 2017 3

ZFS Concepts

August 15th-18th 2017 4

Functionality
• Software RAID (similar in function to mdam, btrfs, etc.)

• Combines individual drives within a single system

• Adds redundancy to gain tolerance to individual drive
failures while maintaining data availability and integrity

• Requires no additional hardware to implement
• RAID controller cards are heavily discouraged, use HBA’s instead
• Many RAID controllers have “IT Mode” or JBOD mode to effectively turn

them into an HBA

• Supported on many Operating Systems
• RHEL, CentOS, Ubuntu, Debian, MacOS, freeBSD, Illumos

August 15th-18th 2017 5

Basic Architecture
• Individual drives are combined together to create a ”vdev”

(virtual device)
• These vdevs form zpools or zvols that are presented to the

operating system
• If multiple vdevs are in the same zpool, data is always

striped across all of them
• There are multiple ways to combine disks to form a vdev

• Stripe
• Mirror
• raidz,raidz2,raidz3

• Supports datasets – “child file systems” that get some of
their own properties

August 15th-18th 2017 6

ZFS vdev Layouts
• Stripe

• Simple as it sounds, data striped across drives

• Mirror
• Mirroring of two (or more) drives together

• RAIDZ/RAIDZ2/RAIDZ3
• Equivalent to RAID 5, RAID 6, and a triple parity version of RAID (RAID 7 is

actually something else) respectively

• Combining these vdev layouts creates other common RAID types
• Multiple mirrors in a zpool effectively creates a RAID 10 equivalent
• Multiple RAIDZ or RAIDZ2 vdevs in a single pool is effectively RAID 50 or

RAID 60

August 15th-18th 2017 7

August 15th-18th 2017 8

Mirror Mirror RAIDZ2

vdev_1 vdev_2 vdev_3

zpool zpool

Architecture Limitations
• Planning for expandability is important
• When adding disks to a zpool, you add them by vdev
• Having uniform vdevs (same redundancy type, drive count)

while not required is usually recommended
• No ability to force balance of data across vdevs when new

ones are added
• However, ZFS will favor emptier vdevs for I/O priority. Helps rebalance,

but hurts performance

• vdev geometry can not be changed post-creation

August 15th-18th 2017 9

Architecture Benefits
• Writes headers to drives in the pool with pool information

• This allows you to take drives out of one system, mix them up, put them in
another and the zpool will import just fine

• Fast resynchronization for zfs offline/online or temporarily
removed drive

• ZFS will be able to detect the drive has mostly all the data it needs and will
get it caught back up without having to fully rebuild drive

• Takes random I/O from application and can turn it into
synchronous writes to disk thanks to ARC

• No lock-in with proprietary RAID cards, any system where
drives can attach and ZFS can be installed can read the
pool

August 15th-18th 2017 10

Caching Architecture: Writes
• ZFS allows for dedicated caching drives for synchronous

writes
• ZIL/SLOG (ZFS Intent Log)
• Caches data on files that are smaller than 64KB, larger flushed to disk
• Best to use use two (mirrored) very fast SSDs (SATA/SAS/NVME), needs to

have power-loss protection
• Only need low capacity, 5GB would suffice
• Not used by all applications: most databases, NFS, and ISCSI targets do use

the ZIL, plain file movement (rsync, cp, scp, etc.) will NOT use the ZIL

August 15th-18th 2017 11

Caching Architecture: Reads
• ZFS is known to be memory hungry as it uses half of RAM

for ARC (Adjustable Replacement Cache)
• This memory usage footprint can be limited via configuration tunable
• Size of ARC does respond to kernel requests so it grows/shrinks as needed

on its own

• ZFS allows for dedicated caching drives for reads in
addition to ARC, non as L2ARC (Level 2 ARC)

• Should be put on fast SSD
• Does NOT need to be mirrored or have power loss protection as it is

flushed on reboot anyway

August 15th-18th 2017 12

August 15th-18th 2017 13

Caching Architecture: Diagram

Image Credit: softnas.com

Recovering from Drive Failure
• When drive failure occurs a vdev goes into a degraded

state
• Hot Spares are supported in ZFS if you want to have a

drive ready in case you can’t get to server physically
• Once the new drive is in place, a command is run and

all drives in that vdev, no matter the vdev geometry,
will participate in providing data to the new drive to
rebuild the data

• This is called a “resilver” and it’s progress can be monitored via ZFS commands

August 15th-18th 2017 14

Scrubbing the Pool
• To protect against bit-rot, or corruption of other

kinds ZFS has a built in mechanism called a “scrub”
• This walks the zpool looking for corruption
• Can be scheduled through cron to run

• Scrubs on multiple zpools can be run simultaneously
• Occur while the file system is online and mounted so there

is no downtime while scrubs are running on the file system
• This is a unique power ZFS has in relation to other journaled file systems

• Scrubs will heal any inconsistency it finds to ensure data is
correct

August 15th-18th 2017 15

ZFS Features

August 15th-18th 2017 16

Copy-on-Write (COW)
• When modifying a block, instead of modifying the live

block, a new one is created and a pointer updated once
the new block is written. Old block is then released back
to the file system

• This keeps the file system consistent in case of sudden system power loss
• Great for data integrity and stability
• Allows for additional file system features (eg. snapshots)

• Down side of this is it can lead to fragmentation on the
disks

• This manifests itself as the file system fills and the file system has to spend
more time looking for available blocks and they’re less contiguous

• Leads to slower performance with file systems close to full
• No easy way to defragment the file system

August 15th-18th 2017 17

Snapshots
• Functions just as it sounds, takes a snapshot at a moment

in time on the file system
• This allows a pool to get rolled back to the moment in time

when the snapshot was taken
• Protects against accidental file deletion or modification
• Helpful if ransomware strikes (eg. file-server scenario with zpool NFS/SMB

exported)
• Enables the zfs send/receive feature

• Command run out of cron, multiple zpools can be snapshotted at
the same time

August 15th-18th 2017 18

ZFS Send/Receive
• Huge feature of ZFS
• Takes an already created snapshot and can send it to a file,

or even another server running zfs
• Better than dd or other tools as the snapshot is

unchanging and consistent so the file system stays online
• Great for making and sending backups of a local file system

to an offsite location
• zfs send over ssh to a machine with zfs receive that will take the data in
• Very efficient as the only thing sent is the snapshot, so size of transfer will

only be the changes

August 15th-18th 2017 19

Compression
• ZFS has built in compression that occurs on the fly, behind

the scenes
• Files appear normally on disk and their compressed state is

invisible to the application working on the file
• There are a few different compression algorithms to chose

from, the most effective one in terms of compression
ratio/performance-penalty trade-off usually being LZ4
compression

• Other compression types: LZJB, GZIP (1 through 9), ZLE (Zero Length
Encoding)

• LZ4 is the default compression when setting compression=on
• Live compression performance can be view live on a per zpool basis

August 15th-18th 2017 20

Deduplication
• ZFS supports block level deduplication

• More useful than just file level deduplication (especially for large files)

• Stores deduplication tables in ARC so there is a large
memory requirement when deduplication is enabled

• If deduplication tables get too big they spill over into L2ARC or into the
zpool disks themselves if no L2ARC is present

• If table spills over into L2ARC there will be some performance impact, but
much less of a hit than if it spilled into the actual pool itself

• Due to the high memory requirements of deduplication
and the nature of HPC data, this feature is rarely useful for
HPC

• no firm ratio of disk capacity to RAM for dedup, but estimates are 1-4GB
RAM/TB of usable space

August 15th-18th 2017 21

Quota
• ZFS has built in quota support
• Quotas can be set for users and groups at the zpool level

or at the dataset level
• Useful in situations where the ZFS file system is a

standalone instance
• eg. the zpool isn’t the backend device for another file system layered on

top
• For situations where the zpool is just the backend device, quota

management at the higher level is definitely best

• Quota support can be either enabled or disabled, default is
disabled

August 15th-18th 2017 22

Datasets within zpools
• ZFS allows for the creation of datasets which act like

folders within a zpool, but can have independent qualities
• Independent quotas, snapshots, compression, permissions
• This allows for logical break outs of structure where it makes sense

functionally
• Don’t have to split up vdevs

• Allows for increased flexibility in managing the storage
pool

• Different groups can have different datasets with permissions and
characteristics that match their needs

• Different datasets for different file types (eg. logs are highly compressible
so they could go into a compressed dataset)

August 15th-18th 2017 23

ZFS Administration

August 15th-18th 2017 24

Laying the Groundwork
• As stated earlier ZFS is compatible with many OS’s; we’ll be

using CentOS 7 for the examples today
• Many of these commands and steps are easy to translate over to debian-

based OS’s and there are great resources available online for additional
examples

• Like many areas, few things are absolutes
• Not everything translates to every environment
• Hardware you have may act differently, there are too many variables to

address them all
• Don’t have time to go through all scenarios, but we’ll hit as many as we

can give resources for the rest

August 15th-18th 2017 25

Installing ZFS
• Grab the zfs repo & install gpg key

August 15th-18th 2017 26

• Install the repo

• Install zfs and kernel-devel

Post-Install Configuration

August 15th-18th 2017 27

• Check to make sure all is happy

• Load the kernel module & Enable module on boot

• Module will now load on boot, and mount your pools

Vdev Geometry Considerations
• Mirror vdev layout

• Benefits
• Faster vdev rebuild (no parity math)
• Higher IOPs for the pool (great for pools backing databases, VMs)
• Best for expandability (can add drives 2 at a time to expand pool)

• Downsides
• Poor space efficiency (50% space efficiency)
• Depending on drive count less resiliency

• RAIDZ vdev layout
• Benefits

• Good space efficiency (80% space efficiency…or more depending on risk)
• Good for big streaming I/O

• Downsides
• Lower IOPs performance
• Expandability requires larger quantity of disk buy in
• Slower rebuilds

August 15th-18th 2017 28

Creating a zpool: Considerations
• Choose your vdev layout
• Select ashift (alignment shift) if necessary

• Aligns vdev to block size of your media (12 for 4K block devices, 13 for 8k
devices, no ashift for 512B devices*)

• Making sure this is correct can impact performance and space overhead
on disk

• Once a vdev is created the ashift can not be changed

• Mapping of devices to vdevs
• Look at your hardware’s topology to see if you can divide up the failure

domains across the vdevs to increase protection

August 15th-18th 2017 29

Creating a zpool: Failure Domains
• Balance vdevs between failure domains to help withstand

failure of other components
• Server with 2 SAS attached JBODs, with mirrored stripes put one drive

from each mirror in a separate JBOD
• Have multiple SAS HBA - balance mirrors across HBA’s to withstand their

failure
• Server with many JBODs (archive box) – spread raidz(2,3) vdevs across

JBODs to withstand enclosure failure

• Other failure domains possible, very dependent on exact
hardware configuration

• If possible spread individual vdevs such that their redundancy protects
them from more than just drive failure

August 15th-18th 2017 30

Creating a zpool: Preparation

• Identify where these devices map to physically (try using
dd on the device to get activity light)

August 15th-18th 2017 31

• Instead of building vdevs with device names, let’s get their
full path which will stay consistent

• Multiple ways to do this, one example is below

device path

• Identifying the disks in your system
• Using lsscsi or fdisk

Creating a zpool: vdev_id.conf
• Building a vdev_id.conf file allows us to assign aliases to

disks for easier identification
• ex. slot_0 or En_1_Bay_04
• Comes in very handy when a drive fails or has issues

• Sample vdev_id.conf files (stored in /etc/zfs/)

August 15th-18th 2017 32

or

From a VM

From a physical
machine

Creating a zpool: Command
• After alias file is ready run udevadm trigger to put paths in

place

August 15th-18th 2017 33

• Create the zpool

command fs name device aliases

• ZFS attempts to detect if there is another partition on disk,
the –f flag will force the creation of the pool

device aliases

vdev type vdev type

Checking zpool
• Command you’ll run most often: zpool status

August 15th-18th 2017 34

Getting zpool Attributes
• Zpools have a lot of tunable attributes

August 15th-18th 2017 35

Cut off output…it’s long

• Most attributes can be modified post FS create

Identifying Drive Failure
• Drive will show up as UNAVAIL and the pool is degraded

August 15th-18th 2017 36

Handling Drive Failure
• Swap drive for new one and update /etc/zfs/vdev_if.conf with

path changes

August 15th-18th 2017 37

• Run: “udevadm trigger” again; then run the replace command

• The pool will begin to resilver to restore redundancy
• If pool set up with hot spare, that can be used for replace also

Scrubbing the Pool
• One line command run out of cron

• Frequency depends on the size of pool and the desired impact on
performance from scrub

• Small disk (or really fast all SSD) pools can usually handle weekly scrubs,
big ones usually monthly; scrub duration dependent on data stored

• Ours kick off late Saturday night, but obviously set it for the lowest usage
period in your environment

August 15th-18th 2017 38

Taking Snapshots
• Another ZFS task run out of cron
• Schedule with frequency desired (hourly, daily, etc.)
• Script that fires the snapshot should also handle snapshot

retention
• Snapshots will take up space as files deleted after the snapshot is taken

will not truly be removed so pointers in the snapshot are still valid
• Figure out how long snapshots should be kept around in your environment

and based on the system’s role

August 15th-18th 2017 39

ZFS Send/Receive
• Killer feature of ZFS, live replicating systems from

snapshots across WAN or LAN
• Send snapshot to image file

August 15th-18th 2017 40

• Send snapshot to another machine with zfs receive

snapshot zfs send
zfs receive

Monitoring Health: ZED
• Built in ZFS alerts for critical events

• Example events below, you can configure which classes get reported

August 15th-18th 2017 41

• Configured in /etc/zfs/zed.d/zed.rc
• Put in your email address
• Uncomment the ZED_NOTIFY_INTERVAL_SECS=3600 line so you don’t

spam yourself
• Can also configure automatic zpool replace if you have hot spares

Monitoring Health: Scripts
• You can write your own scripts to monitor ZFS as well
• Command output is consistent and thus friendly to

common shell script regex (awk, sed, grep, etc.)
• Running automatic S.M.A.R.T. tests on disks isn’t a bad

idea, short or long versions
• Using a utility such as the hddtemp package to monitor

drive temperatures can also be handy especially if machine
is not in a well cooled environment

• Lots of already written scripts and plugins for monitoring
(eg. Nagios) are out there and available for download

August 15th-18th 2017 42

Quick Administration Notes
• ECC Memory encouraged

• Less likely to not have in data center environment, but strongly suggested

• Each vdev is only as fast as its slowest drive
• Why mirrors are favored for high IOPs loads
• Write ACK won’t be sent until all disks have written out their part, which is

longer with RAIDZ/RAIDZ2/RAIDZ3

• Use “zfs export” and “zfs import” when migrating pools
from one machine to the other

• Run the export command before shutdown of source machine to flush all
information to disk; move drives over; run the import command; done

• Sleep well knowing your data is safe

August 15th-18th 2017 43

Resources
• http://zfsonlinux.org
• https://pthree.org/2012/04/17/install-zfs-on-debian-

gnulinux/
• https://github.com/zfsonlinux/zfs/wiki/Mailing-Lists
• Man pages (man zpool; man zfs)

August 15th-18th 2017 44

http://zfsonlinux.org/
https://pthree.org/2012/04/17/install-zfs-on-debian-gnulinux/
https://github.com/zfsonlinux/zfs/wiki/Mailing-Lists

Acknowledgements

August 15th-18th 2017 45

• Members of the SET group at NCSA for slide review
• Members of the steering committee for slide review

Questions

August 15th-18th 2017 46

	Linux Clusters Institute:�ZFS Concepts, Features, Administration
	Quick History of ZFS
	Why ZFS?
	ZFS Concepts
	Functionality
	Basic Architecture
	ZFS vdev Layouts
	Slide Number 8
	Architecture Limitations
	Architecture Benefits
	Caching Architecture: Writes
	Caching Architecture: Reads
	Caching Architecture: Diagram
	Recovering from Drive Failure
	Scrubbing the Pool
	ZFS Features
	Copy-on-Write (COW)
	Snapshots
	ZFS Send/Receive
	Compression
	Deduplication
	Quota
	Datasets within zpools
	ZFS Administration
	Laying the Groundwork
	Installing ZFS
	Post-Install Configuration
	Vdev Geometry Considerations
	Creating a zpool: Considerations
	Creating a zpool: Failure Domains
	Creating a zpool: Preparation
	Creating a zpool: vdev_id.conf
	Creating a zpool: Command
	Checking zpool
	Getting zpool Attributes
	Identifying Drive Failure
	Handling Drive Failure
	Scrubbing the Pool
	Taking Snapshots
	ZFS Send/Receive
	Monitoring Health: ZED
	Monitoring Health: Scripts
	Quick Administration Notes
	Resources
	Acknowledgements
	Questions

