

Linux Clusters Institute: ZFS Hands On Exercise

Georgia Tech, August 15th – 18th 2017

J.D. Maloney | Storage Engineer National Center for Supercomputing Applications (NCSA) malone12@illinois.edu

Goal of Hands on Exercise

- Walk through ZFS install
- Build vdev_id.conf file
- Create zpools of different types
- Get familiar with zpool attributes
- Experiment with compression
- Set up snapshots/restore from them
- Set up zpool scrubs

ZFS Install

• Grab the zfs repo & install gpg key

[root@zfs-demo ~]# wget http://download.zfsonlinux.org/epel/zfs-release.el7_3.noarch.rpm [root@zfs-demo ~]# gpg --quiet --with-fingerprint /etc/pki/rpm-gpg/RPM-GPG-KEY-zfsonlinux gpg: new configuration file `/root/.gnupg/gpg.conf' created

• Install the repo

[root@zfs-demo ~]# rpm -ivh zfs-release.el7_3.noarch.rpm
Preparing...
Updating / installing...
1:zfs-release-1-4.el7_3.centos
[root@zfs-demo ~]#

• Install zfs and kernel-devel

[root@zfs-demo ~]# yum install zfs kernel-devel

Load the kernel module & Enable module on boot

[root@zfs-demo ~]# /sbin/modprobe zfs

[root@zfs-demo ~]# systemctl enable zfs-import-cache zfs-import-scan zfs-mount zfs-share zfs-zed zfs.target

Check to make sure all is happy

[root@zfs-demo ~]# zpool status
no pools available

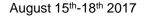
Creating vdev_id.conf file

• Find devices

[root@zfs-demo ~]# fdisk -l

Disk /dev/vda: 42.9 GB, 42949672960 bytes, 83886080 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk label type: dos Disk identifier: 0x0000c4ba

 Device Boot
 Start
 End
 Blocks
 Id
 System


 /dev/vda1
 *
 2048
 83875364
 41936658+
 83
 Linux

Disk /dev/vdb: 5368 MB, 5368709120 bytes, 10485760 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/vdc: 5368 MB, 5368709120 bytes, 10485760 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/vdd: 5368 MB, 5368709120 bytes, 10485760 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/vde: 5368 MB, 5368709120 bytes, 10485760 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Devices are /dev/vd* ; Non-VM environments usually are /dev/sd* or dm-* from multipath

Creating vdev_id.conf file

• Find devices

```
[root@zfs-demo ~]# for i in {b..e}; do echo vd${i} && udevadm info --query=property /dev/vd${i} | grep DEVLINKS; done
vdb
DEVLINKS=/dev/disk/by-id/virtio-cab28228-a255-4da4-9
vdc
DEVLINKS=/dev/disk/by-id/virtio-9d585a48-8667-4668-b
vdd
DEVLINKS=/dev/disk/by-id/virtio-ec112144-7b6e-41e0-a
vde
DEVLINKS=/dev/disk/by-id/virtio-e693dbfd-a98e-4d81-a
```

• Create vdev_id.conf File

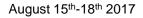
multipath		no
topology		sas_direct
alias	slot_0	/dev/disk/by-path/virtio-pci-0000:00:06.0
alias	slot_1	/dev/disk/by-path/virtio-pci-0000:00:07.0
alias	slot_2	/dev/disk/by-path/virtio-pci-0000:00:08.0
alias	slot_3	/dev/disk/by-path/virtio-pci-0000:00:09.0

Creating zpools

• Create different kinds of zpools, an example below

[root@zfs-demo ~]# zpool create fs_0 mirror slot_0 slot_1 mirror slot_2 slot_3 -f

• Use the zpool destroy command between zpools



Check Out zpool properties

• Check out and play with properties

• Some good ones: recordsize, readonly, snapdir, sync

[root@zfs-demo ~]# zfs get all fs_0					
NAME	PROPERTY	VALUE	SOURCE		
fs_0	type	filesystem	-		
fs_0	creation	Mon Jun 26 10:25 2017	-		
fs_0	used	56.5K	-		
fs_0	available	9.63G	-		
fs_0	referenced	19K	-		
fs_0	compressratio	1.00x	-		
fs_0	mounted	yes	-		
fs_0	quota	none	default		
fs_0	reservation	none	default		
fs_0	recordsize	128K	default		
fs_0	mountpoint	/fs_0	default		

ZFS Compression

- Create a zpool (doesn't matter geometry)
- Turn on Iz4 compression
- Rsync over the data again
- Check the used space with Iz4 compression
- Delete data and try with other algorithms

ZFS Snapshots

- On an empty zpool take a snapshot
- Rsync in some data from sample dataset
- Take another snapshot of the zpool
- Delete a subset of data that you copied over
- Verify it's gone
- Rollback to the snapshot you took
- Verify data is back

ZFS Scrubs

- Have a zpool <u>with</u> data on it
- Create a new script file
- Drop in the scrub command for that zpool (full command path)
- Run the script manually
- Verify it is running
- Can be put in cron via cron method of choice

Wrap Up

- Further Exploration
 - Quotas
 - ZFS Send/Receive
- When done playing with ZFS
 - Destroy any zpools you created
 - Leave ZFS installed, we'll come back to it later

