
Linux Clusters Institute:
Lustre

J.D. Maloney | Storage Engineer
National Center for Supercomputing Applications (NCSA)

malone12@illinois.edu

Georgia Tech, August 15th – 18th 2017

Lustre Overview
• Open Source file system supported, developed by many

companies and large institutions (Intel, Seagate, DDN, CEA,
DOE)

• One of the two “prominent” file systems in used today by the
world’s largest supercomputers

• Known for its ability to scale sequential I/O performance as
the storage system grows

• More complicated to administer, stricter operating
environment (OFED stack, kernel, etc.)

• Can grow to greater numbers of clients

August 15th-18th 2017 2

History of Lustre

August 15th-18th 2017 3

• Long history in the HPC community
• Began in 1999 as a research project by Peter Braam at

Carnegie Mellon University
• Braam started a company (Cluster File Systems Inc) and

continued development of the file system
• DOE backed project as part of the Advanced Strategic Computing Initiative

• Sun bought out Cluster File Systems Inc in 2007
• Braam went to Xyratex (who acquired the hardware during the deal)

• Oracle took control of Lustre releases upon their
acquisition of Sun Microsystems

History of Lustre

August 15th-18th 2017 4

• Oracle announced it would cease development of the file
system

• Quickly an open source community sprang up to support the file system

• Many Lustre developers left Oracle founded Whamcloud
that took a lot of Lustre development

• Whamcloud was acquired by Intel in 2012 and much of the
talent in Whamcloud moved to Intel

• In 2017 Intel announced it was leaving the commercial
Lustre space, community is continuing to support file
system

Stand Out Lustre Features

August 15th-18th 2017 5

• Able to handle extremely high client count 10’s to 100’s of
thousands of clients can mount the file system

• File System throughput bandwidth scales very well
• Easily supports multiple networks simultaneously via LNET

routing
• Open source, no licenses to run the file system
• Strong community behind the file system pushing it

forward and contributing code

Stand Out Lustre Features

August 15th-18th 2017 6

• Dynamic stripe capability allowing users to define the level
of parallelization they’re using on the file system (for
objects on OSTs)

• Can run on top of software based RAID solutions
• LDISKFS (ext4) (traditional)
• ZFS (recent and up and coming)

• No fancy controllers are needed to maintain a reliable file
system

• Uses HA/Failover to maintain high-uptime/reliability

Lustre Weaknesses

August 15th-18th 2017 7

• Relies on Fencing/STONITH to maintain reliable system
during node failure scenarios

• No built in policy engine to handle file movement,
migration, and policies; relies on external policy engine

• HSM functionality while built in does not support tiers
within the file system (something like storage pools in
Spectrum Scale), only supports external connectors

• With Intel backing away from commercially supporting
Lustre, support will have to come from vendor

Popular Lustre Appliances

August 15th-18th 2017 8

• Can buy ready built appliances from many vendors, here
are some:

Warp MechanicsDDNSeagate

Lustre Hardware

August 15th-18th 2017 9

• Many other vendors will sell you hardware pre-configured
for Lustre file systems

• Find solution that hits your price point and you have
confidence in your vendor to provide a solid product

• Can also build yourself on “white box”/commodity
hardware

• Or even in a virtual machine environment on your laptop to test

• Appliance or not depends on how much of a turn key
solution you want to have or use

Lustre Concepts

August 15th-18th 2017 10

Key Definitions

August 15th-18th 2017 11

• MDS (Metadata Server) – Server(s) where information
about the files are stored

• eg. pointers, attributes, extended attributes

• MDT (Metadata Target) – Disk(s) attached to the MDS that
provide the storage for the file system metadata

• OSS (Object Storage Server) – Servers that host the actual
data itself (the actual files, but nothing about them)

• OST (Object Storage Target) – Disk(s) attached to the OSS
that provide the storage for the file system data

• MGS (Management Server) – Stores Lustre file system
information

Lustre High Level Architecture

August 15th-18th 2017 12

Image Credit: nextplatorm.com

Scaling Out

August 15th-18th 2017 13

• Both Metadata Servers and Object Storage Servers are
increased to improve performance of the file system

• Metadata Scaling is newer to Lustre and has/is only
becoming solid in the last couple versions

• Object Server Scaling has been a hallmark of Lustre
• Why you see systems crossing over the 1TB/s mark on highly sequential

benchmarks (think IOR’s) and certain workloads (check pointing for
example)

• MGS can handle multiple Lustre file systems, a new one is
not necessary for every FS created

Examining a File I/O

August 15th-18th 2017 14

• Following an I/O request helps us understand how the file
system architecture responds to workloads

• Seeing what the file system has to do for a given task makes it easier to see
where bottlenecks form and why

• Simplest unit of work, less distraction

• Notes for following slide:
• Layout EA Layout extended attribute, describes where the objects for a

given file needs to land or where to find them (depending on the desired
operation, read or write)

• FID File Identifier; a very important concept in Lustre, all
files have a FID associated with them…this will come up later

Lustre File I/O Process

August 15th-18th 2017 15

Image Credit: lustre.org

Lustre Metadata Architecture

August 15th-18th 2017 16

• Now that we’ve walked through what a basic file I/O looks
like, what can we infer about about our needs for
metadata infrastructure?

• A pretty powerful MDS for sure…or how about many MDS’s
• For clusters with many thousands of clients, that’s a lot of beating to do on

one MDS

• The MDS is critical to operations occurring on the file
system in a timely fashion

• I/O from clients whether Read or Write need to go through
the MDS to understand file layout and location

• Admin tools also tap into the MDS for information,
increasing the load

Lustre Metadata Architecture

August 15th-18th 2017 17

• DNE to the rescue
• Distributed Namespace Environment

• Phase 1
• Released in Lustre 2.4
• Required more manual configuration
• Each top level dir could be managed by different MDS to spread the load
• Worked well if top level dirs had good load distribution

• Not usually the case

• Phase 2
• Release in Lustre 2.8
• Each directory striped across multiple MDS servers
• Easier to deploy, don’t have to worry about new top level dirs
• Works regardless of load distribution on top level dirs

Lustre DNE1 Architecture

August 15th-18th 2017 18

Image Credit: opensfs.org

Lustre DNE2 Architecture

August 15th-18th 2017 19

Image Credit: opensfs.org

Lustre Metadata Server

August 15th-18th 2017 20

• Powerful Dual Socket CPU System
• Decent amount of memory, helpful to a degree

• No more than 128GB per MDS
• Use of ZFS or not has impact on memory configuration

• Fast disks for MDT are essential
• Great candidate for this is NVME
• Disks now come in U.2 form factor for easier access
• RAID10 still best configuration for drives to build MDT

• Good network connectivity
• Bandwidth does not need to be high as big data doesn’t flow through MDS
• Low latency connection is recommended
• Usually low latency connections (IB, OPA, come with high bandwidth also)

Lustre Data Architecture

August 15th-18th 2017 21

• From the I/O walk through activity what does that tell us
about our needs for the Lustre data infrastructure?

• Lots of high throughput OSS/OST’s
• Where all data actually lives, so we need capacity here and speed

• Actual data served to clients in and out of these machines
• Disks combined using either LDISKFS (ext4) or ZFS

depending on the system
• Meant to protect against drive failure

• Two OSS’s can see each OST, HA Failover between those
two OSS’s allows one to adopt the other’s OST’s if the
other OSS has an issue

Lustre Data Architecture

August 15th-18th 2017 22

• Dynamic File Striping
• Number of OSTs that the file is striped across when it is written out to disk

• The more OSTs that are striped across the higher the
amount of sequential throughput there is on that file

• Useful on larger files not on small files
• Stripe width is set by the user for a file, not something that

is configured at a system wide level
• Changing the stripe width of an existing file requires a re-write of that file

• Depending on user usage and how the file system
randomly picks OSTs, you need to watch for hot spots
where some OSTs get more full than others

Lustre Stripe Width

August 15th-18th 2017 23

Image Credit: nics.tennessee.edu

Lustre Object Storage Server

August 15th-18th 2017 24

• Powerful Dual Socket CPU System
• Decent amount of memory, helpful to a degree

• No more than 128GB per OSS
• Use of ZFS or not has impact on memory configuration

• Big disks for OSS are desired
• Large current rotational drives are best
• SAS connected HDD for multipath to two OSS hosts
• Built with RAID6 or Erasure coded groups

• Good network connectivity
• High bandwidth is good, want for streaming performance
• Matching network capacity to disk performance if possible
• High bandwidth fabrics (IB, OPA)

Lustre Quotas

August 15th-18th 2017 25

Quotas
• Enabled/Disabled Globally for a filesystem
• Can be set for:

• users
• Groups
• Projects (new in Lustre 2.10)

• Can be set on:
• Inodes (MDT)
• Blocks (OSTs)

• Limits
• Hard (cannot go over)
• Soft (can go over for the set grace period)

26August 15th-18th 2017

Quota Distribution
• Quotas are distributed from the Quota Master Target (QMT)

• Only one QMT is supported and only runs on the MDS
• MDS maintains the Inode quotas
• MDS and OSS track Block quotas

• All OSTs and MDTs setup a Quota Slave Device (QSD)
• QSD connects to QMT to allocate/release quota space

27August 15th-18th 2017

• OSS maintains quota sub-allocations per user/group for local
OSTs

• As needed, OSS requests new allocation per OST before writing

• Quota space is initially allocated in very large chunks from
QMT

• Large requests when lots of quota is available to minimize quota requests
• Minimum chunk size (qunit) for inodes an blocks

• Chunk requests will succeed until over the limit
• Writes to OSTs with chunks available will still succeed
• Can result in exceeding hard quota

28

Quota Allocation

August 15th-18th 2017

• Users/Groups enter “grace period” when soft limit is
exceeded

• Soft limit can be exceeded for the duration of the grace period
• When grace period is exceeded, soft limit becomes the hard limit
• Grace periods can only be modified globally

• Default: 1 week
• The difference between soft and hard limit should be limited

to help keep overruns reasonable

29

Quota Grace

August 15th-18th 2017

• Exceeding hard quota is possible
• ”Granted cache” allows fast writes to succeed from clients
• If the Lustre client has enough granted cache, it returns ‘success’ to users and

arranges the writes to the OSTs.
• Because the Lustre clients have already delivered a success to users, the OSTs

cannot fail these writes.

• This overage can be mitigated, but not completely
• Reducing the maximum amount of dirty data on the clients will limit this

effect (min value is 1MB).
lctl set_param osc.*.max_dirty_mb=8

30

Exceeding Quota

August 15th-18th 2017

• From Lustre versions 2.4 on, quota (accounting) is enabled
by default

• Enabling/Disabling quota enforcement:
• turn on user, group quotas for block only on filesystem lustre1, run on MGS

lctl conf_param lustre1.quota.ost=ug

• turn on group quota for inodes on filesystem lustre2, run on MGS
lctl conf_param lustre2.quota.mdt=g

• turn off all quotas for filesystem lustre3, run on MGS
lctl conf_param lustre3.quota.ost=none

lctl conf_param lustre3.quota.mdt=none

31

Quota Configuration

August 15th-18th 2017

• Verify per target enforcement status
$ lctl get_param osd*.*.quota_slave.info

osd1.lustre-MDT0000.quota_slave.info=

target name: testfs-MDT0000

pool ID: 0 type: md

quota enabled: ug

conn to master: setup

user uptodate: glb[1],slv[1],reint[0]

group uptodate: glb[1],slv[1],reint[0]

32

Quota Configuration

August 15th-18th 2017

• Quota limits are set using the command:
lfs setquota

lfs setquota –u user1 –b 307200 –B 309200 –i 10000 –I 11000
/mnt/lustre

lfs setquota –g group1 –b 5120000 –B 5150000 –i 100000 –I
101000 /mnt/lustre

33

Quota Configuration

August 15th-18th 2017

• The quota command displays the quota allocated and
consumed by each Lustre target

$ lfs quota –u user1 -v /mnt/lustre

Disk quotas for user user1 (uid 6000):

Filesystem kbytes quota limit grace files quota limit grace

/mnt/lustre 0 30720 30920 - 0 10000 11000 –

lustre-MDT0000_UUID 0 - 8192 - 0 - 2560 –

lustre-OST0000_UUID 0 - 8192 - 0 - 0 –

lustre-OST0001_UUID 0 - 8192 - 0 - 0 –

Total allocated inode limit: 2560, total allocated block limit:
24576

34

Quota Reporting

August 15th-18th 2017

Changelogs

August 15th-18th 2017 35

Changelogs
• Changelogs record events that change the file system

namespace or file metadata.
• The change type, target and parent file identifiers (FIDs), the

name of the target, and a timestamp are recorded.
• These can be used in a variety of ways:

• Capture recent changes to feed into and archive system
• Replicate changes in a filesystem mirror
• Use the events to trigger actions based on specific criteria
• Maintain a rough audit trail (no user information)

36August 15th-18th 2017

Changelog Record Types

37August 15th-18th 2017

• MARK – Internal record keeping
• CREAT – Regular file creation
• MKDIR – Directory creation
• HLINK – Hard link
• SLINK – Soft link
• OPEN – open file
• CLOSE – close file
• MKNOD – Other file creation
• UNLNK – Regular file removal
• RMDIR – Directory removal

• RNMFM – Rename, original
• RNMTO – Rename, final
• IOCTL – ioctl on file or directory
• TRUNC – Regular file truncated
• SATTR – Attribute change
• XATTR – Extended Attribute

change
• HSM – HSM action
• UNKNW – Unkown operation

Changelog Usage
• Changelog records use space on the MDT

• Sysadmin must register changelog users
• Registered users specify which records they are ”done with” and the system

purges up to that point
• Changelog entries are not purged beyond a registered user’s set point.

• Register new changelog user
lctl –-device lustre-MDT0000 changelog_register

lustre-MDT0000: Registered changelog userid 'cl1'

38August 15th-18th 2017

• To actually start the changelogs, the changelog_mask must
be set

• Changelog_mask specifies what record types are recorded
lctl set_param mdd.lustre-MDT0000.changelog_mask=MARK CREAT
MKDIR HLINK SLINK MKNOD UNLNK RMDIR RNMFM RNMTO OPEN CLOSE
IOCTL TRUNC SATTR XATTR HSM

mdd.lustre-MDT0000.changelog_mask=

MARK CREAT MKDIR HLINK SLINK MKNOD UNLNK RMDIR RNMFM RNMTO OPEN
CLOSE IOCTL TRUNC SATTR XATTR HSM

• Note: This example sets almost all of the record types.In
practice, on a busy system, some of these may need to be
trimmed.

39

Changelog Usage

August 15th-18th 2017

• Display changelogs
lfs changelog fsname-MDTnumber [startrec [endrec]]

• Start and end records are optional
• Example changelog records:
$ lfs changelog lustre-MDT0000

1 00MARK 19:08:20.890432813 2010.03.24 0x0 t=[0x10001:0x0:0x0]
p=[0:0x0:0x0] mdd_obd-lustre-MDT0000-0

2 02MKDIR 19:10:21.509659173 2010.03.24 0x0
t=[0x200000420:0x3:0x0] p=[0x61b4:0xca2c7dde:0x0] mydir

3 14SATTR 19:10:27.329356533 2010.03.24 0x0
t=[0x200000420:0x3:0x0]

4 01CREAT 19:10:37.113847713 2010.03.24 0x0
t=[0x200000420:0x4:0x0] p=[0x20\ 0000420:0x3:0x0] hosts

40

Changelog Usage

August 15th-18th 2017

• Use the changelog_clear command to clear old changelog
records for a specific user.

• This will most likely allow the MDT to free up disk space
lctl changelog_clear mdt_name userid endrec

• Notify a device that user cl1 no longer needs records (up to
and including 3):

$ lfs changelog_clear lustre-MDT0000 cl1 3

• Confirm operation was successful
$ lfs changelog lustre-MDT0000

4 01CREAT 19:10:37.113847713 2010.03.24 0x0
t=[0x200000420:0x4:0x0] p=[0x200000420:0x3:0x0] hosts

41

Changelog Usage

August 15th-18th 2017

• To stop changelogs, changelog_mask should be set to MARK
only

lctl set_param mdd.lustre-MDT0000.changelog_mask=MARK

mdd.lustre-MDT0000.changelog_mask=MARK

• If disabling changelogs permanently, or for an extended
period, clear any remaining backlog before deregistering
changelog user using changelog_clear.

lctl get_param mdd.lustre-MDT0000.changelog_users

mdd.lustre-MDT0000.changelog_users=

current index: 81680

ID index

cl1 81500

• Backlog = [current_index] – [cl1 index]
81680 - 81500 = 180

42

Changelog Usage

August 15th-18th 2017

• Clear remaining changelogs
$ lctl changelog_clear lustre-MDT0000 cl1 81680

• Confirm cleared changelog records
lctl get_param mdd.lustre-MDT0000.changelog_users

mdd.lustre-MDT0000.changelog_users=

current index: 81680

ID index

cl1 81600

• Deregister changelog user
lctl --device lustre-MDT0000 changelog_deregister cl1

lustre-MDT0000: Deregistered changelog user 'cl1'

43

Changelog Usage

August 15th-18th 2017

Consuming Changelogs
• The most common use of changelogs is in conjunction with

Robinhood, an external filesystem reporting/policy engine.

• Robinhood uses a combination of scanning the filesystem
and changelog consumption to create a replica/shadow of
the filesystem metadata in an external database.

44August 15th-18th 2017

Robinhood

August 15th-18th 2017 45

Robinhood
• External filesystem reporting/policy engine developed by

CEA
• Runs on separate server from Lustre file system servers
• Utilizes a database backend (MySQL,MariaDB) to create a

replica/shadow of the filesystem metadata
• Customizable policies with many triggering options
• Filesystem usage reports
• Tools: rbh-find, rbh-du

46August 15th-18th 2017

Robinhood Database
• Should have a dedicated Database server/disk

• Highest available/affordable CPU frequency
• As much memory as possible (cache as much DB as possible in memory)
• Low Latency network
• Fast disk for DB
• DB server can mount Lustre and run robinhood locally, or the DB server can

be completely dedicated and Robinhood is run on a separate server.

• Disk space ~1KB per entry (e.g. 100GB for 100 million
entries)

• SSD or NVME if possible

47August 15th-18th 2017

Robinhood Installation
• Tarball/RPMs from sourceforge:

• https://sourceforge.net/projects/robinhood/

• Pull latest source from github and build rpms or build/install:
• https://github.com/cea-hpc/robinhood
• https://github.com/cea-

hpc/robinhood/wiki/robinhood_v3_admin_doc#installation

48August 15th-18th 2017

https://sourceforge.net/projects/robinhood/
https://github.com/cea-hpc/robinhood
https://github.com/cea-hpc/robinhood/wiki/robinhood_v3_admin_doc#installation

Robinhood Configuration
• Robinhood provides a basic and extended examples in
/usr/share/robinhood/templates

• Basic configuration
• Copy basic example

cp /usr/share/robinhood/templates/basic.conf\
/etc/robinhood.d/newrbh.conf

• Edit DB details
ListManager {

MySQL {

server = your_db_server;

db = your_db_name;

user = robinhood;

password_file = /etc/robinhood.d/.dbpassword;

}

}

49August 15th-18th 2017

Robinhood Configuration
• Specify filesystem is Lustre and the mount point
General {

fs_path = "/path/to/fs";

filesystem type, as displayed by 'mount' (e.g. ext4, xfs,
lustre, ...)

fs_type = lustre;

}

• Also be sure to create the .dbpassword file with the
database user password

password_file = /etc/robinhood.d/.dbpassword;

50August 15th-18th 2017

Configure Robinhood DB
• Setup and start MySQL
• Connect to MySQL as root and create Robinhood DB and

Robinhood User
mysql –p

mysql> create database rbh_lustre;

mysql> GRANT all on rbh_lustre.* to ‘rbh_user’@’lustre_client
host’ IDENTIFIED BY ‘rbh_user_password’;

mysql> FLUSH PRIVILEGES;

51August 15th-18th 2017

Feeding Robinhood
• Initial Scan

• An initial full scan should be performed to fill the DB. While this is running it
is also best to enable changelogs and start an instance of Robinhood doing
this as well.

• When you start Robinhood against an empty database it will create the
appropriate schema before it starts doing it’s work

robinhood --scan –-once –f newrbh –D

• Changelogs
robinhood -r -f newrbh –D

52August 15th-18th 2017

Robinhood Policy
• Robinhood’s policies can be used to perform many

filesystem action either on a schedule or triggered by
specific criteria. Some common policy definitions are
included with the Robinhood install
/etc/robinhood.d/includes/

• There are 4 elements that make up a Robinhood Policy
• Declaration: specifies the name of the policy, status manager to manage

status of entries, scope (static base set of entries to apply policy to), default
action/sort (other basic policy actions).

• Parameters: specific parameters to default actions, number of actions per
run or rate limits, scheduling configuration to allow reordering or delayed
actions

53August 15th-18th 2017

Robinhood Policy
• There are 4 elements that make up a Robinhood Policy

(cont.)
• Rules: excludes, conditionals for file classes, override default settings
• Triggers: Conditions to start policy runs (set intervals, usage thresholds, etc.),

optional set of resources to check (users, groups, OSTs), number of actions
per run or rate limits.

54August 15th-18th 2017

Robinhood Policy Examples
• Cleanup/Purge Policy
• Add the tmpfs.inc include to the robinhood config
%include "includes/tmpfs.inc”

• Here is the content of tmpfs.inc:
used to be rbh 2.5 "purge" policy in TMPFS mode

define_policy cleanup {

scope { type != directory }

status_manager = none;

default_action = common.unlink;

default_lru_sort_attr = last_access;

}

55August 15th-18th 2017

• File classes can/should be used to narrow the scope of
entries to be processed

fileclass scratch_files {
definition { type == file and tree == “/path/to/user/files” }

}

• Specify policy rules – clean(purge) files from the scratch_files
fileclass that have access times older than 30 days

cleanup_rules {
ignore { last_access < 7d }
rule clean_scratch_files {

target_fileclass = scratch_files;
condition { last_access > 30d }

}
default rule (optional): # apply to all other entries
rule default { condition { last_access > 60d } }

}

56

Robinhood Policy Examples

August 15th-18th 2017

• Define triggers
cleanup_trigger {

trigger_on = global_usage;

high_threshold_pct = 80%;

low_threshold_pct = 75%;

check_interval = 15min;

}

• The global_usage is based on the whole file system. This
could also be triggered on “ost_usage” (if an OST hits a
threshold), or user/group thresholds.

57

Robinhood Policy Examples

August 15th-18th 2017

• Run the policy
• By hand:

robinhood --run=cleanup –d

• Target only a specific user
robinhood --run=cleanup --target=user:foo

• Delete 1000 files from ost23
robinhood --run=cleanup --target=ost:23 --max-count=1000

58

Robinhood Policy Examples

August 15th-18th 2017

• Run the policy
• OR use the Robinhood service to run policies

• Edit /etc/sysconfig/robinhood (or /etc/sysconfig/robinhood.”fs
name” on RHEL7)

• Append --run=cleanup to RBH_OPT (if the --run option is already present,
add it to the list of run arguments, e.g. --run=policy1,cleanup)

• Start (or restart) robinhood service:
RHEL6: service robinhood restart

RHEL7: systemctl restart robinhood[@''fsname'']

59

Robinhood Policy Examples

August 15th-18th 2017

filesystem entries:

rbh-report --fs-info

type , count, volume, avg_size

dir, 1780074, 8.02 GB, 4.72 KB

file, 21366275, 91.15 TB, 4.47 MB

symlink, 496142, 24.92 MB, 53

user info, split by group

rbh-report -u bar -S

user , group, type, count, spc_used, avg_size

bar , proj1, file, 4, 40.00 MB, 10.00 MB

bar , proj2, file, 3296, 947.80 MB, 273.30 KB

bar , proj3, file, 259781, 781.21 GB, 3.08 MB

60

Robinhood Reports

August 15th-18th 2017

file size profile for a given user

rbh-report -u foo --szprof

user, type, count, volume, avg_size, 0, 1~31, 32~1K-, 1K~31K,
32K~1M-, 1M~31M, 32M~1G-, 1G~31G, 32G~1T-, +1T

foo , dir, 48, 1.48 MB, 31.67 KB, 0, 0, 0, 26, 22, 0, 0, 0, 0, 0

foo , file, 11055, 308.16 GB, 28.54 MB, 2, 0, 14, 23, 5276, 5712,
9, 17, 2, 0

top disk space consumers

rbh-report --top-users

rank, user , spc_used, count, avg_size

1, usr0021 , 11.14 TB, 116396, 100.34 MB

2, usr3562 , 5.54 TB, 575, 9.86 GB

3, usr2189 , 5.52 TB, 9888, 585.50 MB

4, usr2672 , 3.21 TB, 238016, 14.49 MB

5, usr7267 , 2.09 TB, 8230, 266.17 MB

61

Robinhood Reports

August 15th-18th 2017

• rbh-find: Clone of the “find” command that searches the
Robinhood DB instead of the filesystem to find objects
matching the passed criteria

rbh-find /mnt/lustre/dir -u root -size +32M -mtime +1h -ost 2
–ls

• rbh-du: Clone of the “du” command that uses the
Robinhood DB instead of the filesystem to calculate disk
usage

rbh-du -H -u foo /mnt/lustre/dir.3 45.0G /mnt/lustre/dir.3

62

Robinhood Tools

August 15th-18th 2017

LNet Routing

August 15th-18th 2017 63

LNet Routing Overview
• Configuring LNet is optional

• LNet will use the first TCP/IP interface it discovers on a system if it is loaded
using the lctl network up command.

• LNet configuration is required if:
• Using Infiniband
• Using multiple Ethernet interfaces

64August 15th-18th 2017

LNet Routing Overview

65

Image Credit: lustre.org

August 15th-18th 2017

• Routes are typically set to connect to segregated subnetworks or
to cross connect two different types of networks such as tcp and
o2ib

• The LNet routes parameter specifies a colon-separated list of
router definitions. Each route is defined as a network number,
followed by a list of routers.

• Bidirectional routing example:
options lnet 'ip2nets="tcp0 10.1.0.*; \

o2ib0(ib0) 10.11.0.[1-128]"' 'routes="tcp0 10.11.0.[1-8]@o2ib0; \

o2ib0 10.1.0.[1-8]@tcp0"'

66

LNet Routing Overview

August 15th-18th 2017

Configuring LNet
• LNet kernel module (lnet) parameters specify how LNet is to

be configured to work with Lustre
• networks - Specifies the networks to be used.

options lnet networks=tcp0(eth0),o2ib(ib0)

• ip2nets - Lists globally-available networks, each with a range of IP
addresses. LNet then identifies locally-available networks through address
list-matching lookup.

options lnet 'ip2nets="tcp0(eth0) 10.1.0.[2,4]; tcp0
10.1.0.*; o2ib0 10.11.1.*"’

• Use one or the other. Ip2nets is nice to allow one lnet.conf across a cluster.

67August 15th-18th 2017

LNet Configuration
• In Lustre 2.7 DLC – Dynamic LNet Configuration
• lnetctl utility can be used to configure LNet dynamically.

• Add/Remove Networks
• Add/Remove Routes
• Enable/Disable Routing
• Not everything is dynamically configurable

68August 15th-18th 2017

LNet Routing Sends/Receives
Receives
• Additional credit accounting when routers receive a message

destined for another peer
• These credits account for resources used on the router node
• Peer Router Credit

• Governs the number of concurrent receives from a single peer

• Router Buffer Credit
• Router has limited number of three different sized buffers: tiny, small, large
• Router buffer credits ensure we only receive if an appropriate buffer is available

Sends
• Every lnet_send() uses a peer credit and a network interface

credit
• except loopback interface NI: 0@lo

69August 15th-18th 2017

LNet Credits
• Max_rpcs_in_flight and max_pages_per_rpc, addressed

later… effect router credits
• 4MB I/Os associate additional LNet memory descriptors with

a bulk operation. LNet MTU is still 1MB
• The total number of messages (and thus credits) required to

complete bulk reads and writes is lower for transfers > 1MB

70August 15th-18th 2017

LNet Credits
• lctl set_param osc.*.max_pages_per_rpc=1024

71

256 pages/RPC 1024 pages/RPC

1MB Write 1 RPC, 2 Credits 1 RPC, 2 Credits

2MB Write 2 RPC, 4 Credits 1 RPC, 3 Credits

3MB Write 3 RPC, 6 Credits 1 RPC, 4 Credits

4MB Write 4 RPC, 8 Credits 1 RPC, 5 Credits

of bulk write RPCs sent and peer credits taken for bulk
transfer by a single client for different sized writes (read case is
the same)

August 15th-18th 2017

Lustre Client Tuning

August 15th-18th 2017 72

Lustre Client Tuning
• Max_rpcs_in_flight

• Max RPCS in flight between OSC and OST
• 1-256 Default: 8

/proc/fs/lustre/osc/<OST name>/max_rpcs_in_flight

lctl set_param osc.*.max_rpcs_in_flight=256

• Max_pages_per_rpc
• Max number of 4K pages per RPC
• 256 = 1MB per RPC

/proc/fs/lustre/osc/<OST name>/max_pages_per_rpc

lctl get_param osc.*.max_pages_per_rpc

73August 15th-18th 2017

Lustre Client Tuning
• Max_dirty_mb

• Maximum MBs of dirty data that can be written and queued on a client
• Set per OST
• Default: 32MB, MAX: 1024MB

/proc/fs/lustre/osc/<OST name>/max_dirty_mb

lctl get_param osc.*.max_dirty_mb

74August 15th-18th 2017

Resources
• http://lustre.org/getting-started-with-lustre/
• http://lustre.ornl.gov/lustre101-courses/
• http://opensfs.org/lug-2017/
• https://www.eofs.eu

August 15th-18th 2017 75

Acknowledgements

August 15th-18th 2017 76

• Members of the SET group at NCSA for slide creation and review
• Members of the steering committee for slide review

Questions

August 15th-18th 2017 77

	Linux Clusters Institute:�Lustre
	Lustre Overview
	History of Lustre
	History of Lustre
	Stand Out Lustre Features
	Stand Out Lustre Features
	Lustre Weaknesses
	Popular Lustre Appliances
	Lustre Hardware
	Lustre Concepts
	Key Definitions
	Lustre High Level Architecture
	Scaling Out
	Examining a File I/O
	Lustre File I/O Process
	Lustre Metadata Architecture
	Lustre Metadata Architecture
	Lustre DNE1 Architecture
	Lustre DNE2 Architecture
	Lustre Metadata Server
	Lustre Data Architecture
	Lustre Data Architecture
	Lustre Stripe Width
	Lustre Object Storage Server
	Lustre Quotas
	Quotas
	Quota Distribution
	Quota Allocation
	Quota Grace
	Exceeding Quota
	Quota Configuration
	Quota Configuration
	Quota Configuration
	Quota Reporting
	Changelogs
	Changelogs
	Changelog Record Types
	Changelog Usage
	Changelog Usage
	Changelog Usage
	Changelog Usage
	Changelog Usage
	Changelog Usage
	Consuming Changelogs
	Robinhood
	Robinhood
	Robinhood Database
	Robinhood Installation
	Robinhood Configuration
	Robinhood Configuration	
	Configure Robinhood DB
	Feeding Robinhood
	Robinhood Policy
	Robinhood Policy
	Robinhood Policy Examples
	Robinhood Policy Examples
	Robinhood Policy Examples
	Robinhood Policy Examples
	Robinhood Policy Examples
	Robinhood Reports
	Robinhood Reports
	Robinhood Tools
	LNet Routing
	LNet Routing Overview
	LNet Routing Overview
	LNet Routing Overview
	Configuring LNet
	LNet Configuration
	LNet Routing Sends/Receives
	LNet Credits
	LNet Credits
	Lustre Client Tuning
	Lustre Client Tuning
	Lustre Client Tuning
	Resources
	Acknowledgements
	Questions

