
Linux Clusters Institute:
Ceph & Swift

Sam Linston
Utah Center for High Performance Computing

sam.linston@utah.edu

J.D. Maloney | Storage Engineer
National Center for Supercomputing Applications (NCSA)

malone12@illinois.edu

Georgia Tech, August 15th – 18th 2017



Introduction
• The rise of object storage is showing itself these past few years
• Driven by the massive growth of datasets and prominence of 

large web-scale companies that need to store obscene amounts 
of data

• Object storage and Amazon S3 storage are closely recognized together for example
• Many options are out there for object storage, way more than 

just Ceph and Swift
• These are the two most popular ones in the HPC space

• As research data sharing continues to grow and web portals to 
datasets are build, we need to build them on something

August 15th-18th 2017 2



Ceph

August 15th-18th 2017 3



Overview
• Object/Block/Posix file system that is owned by Red Hat
• It along side GlusterFS are in Red Hat Storage Server 

product
• Open Source, free to use, commercial support available 

through Red Hat
• Provides Object, Block, and Posix storage
• Very popular in the cloud/virtualization space

• Can underpin things like Open Stack and Proxmox

• Runs on “commodity” hardware
• Can be deployed over Ethernet or IB

• Ethernet is very popular with this FS

August 15th-18th 2017 4



General High Level View

August 15th-18th 2017 5

Image Credit: ceph.com



Deeper Architecture Views

August 15th-18th 2017 6

Image Credit: apprize.info



Deeper Architecture Views

August 15th-18th 2017 7

Image Credit: ksperis.com



A ”Jack of All Trades”
• Offers all three kinds of storage
• The LIBRADOS layer brokers all interfaces with the storage 

system for great flexibility
• Valuable in that one managed system can house 

everything
• Only mainstream file system besides Spectrum Scale that 

can support all three types
• Many only provide POSIX, or block/object

August 15th-18th 2017 8



Data Structure
Storage Blob
• The configuration of the MONs 

and OSDs result in a blob of 
storage

• Organized mass of storage
• No structure
• This very loose structure is what 

allows Ceph to be the flexible 
and powerful solution it is

August 15th-18th 2017 9

Image Credit: Sam Linston



Data Structure
Pools
• A set of pools are created during system setup
• Several pools for user information and several other utility pools
• Pool for data payload

• Pool is configured with desired level of resiliency
• Two resiliency methods

• Can be N way replication (2x or 3x data copies)
• Can be K+M fragment erasure coding (newer, but stable feature)
• Desired endurance of data and other environment characteristics determine 

which type of data protection is best

August 15th-18th 2017 10



Data Structure
Placement Groups
• Ensures proper, balanced object disbursement and configured 

redundancy
• Number of PGs in a pool determined by

• Number of OSDs in cluster
• Number of replicas or level of resiliency

August 15th-18th 2017 11



Architecture Considerations
Failure Domains
• Set of rules defining segregation of replicated instances or 

distributed object fragments
• Can be as coarse or granular as needed
• Machine, rack, row, room, datacenter, etc

• Configure failure domains to minimize the chance of down 
time of the service

• How this is done is mostly dependent on environment and resources you 
have available

• Something to consider and plan for before going into 
production

August 15th-18th 2017 12



Architecture Considerations
I/O Storms
• What will the rebalance impact be if one server and its 

disks fails
• Chose smaller number of disks/server to reduce the 

intensity of the I/O storm
• As small as 12 to 1
• As large as 60 to 1
• Depends on tier, server power and bandwidth

• Take rebuild situations into consideration when deciding 
on backend network infrastructure so that recoveries don’t 
have a very noticeable impact on the quality of service

August 15th-18th 2017 13



Architecture Considerations
Set a High Watermark
• Never good to push file systems to high levels of filled 

capacity, a high watermark should be determined
• Rough target of ~75%-80% full
• Must be room to rebalance to

• Too full and the ability to be resilient decreases
• Once your system starts to approach your high watermark 

start working on adding capacity and rebalance the data 
across systems

• Consider this in your design, how are you going to add on 
in the future when growth occurs

August 15th-18th 2017 14



Architecture Considerations
Performance
• Dedicated Journal devices (usually SSDs)

• Ratio of Journal devices to non-journal devices
• The more that share the same journal device, the more contention there is 

going to be for quick writes
• Network bandwidth on the backend

• 10G/40G/100G Ethernet
• Backbone between switches

• Different tiers of performance
• Consider a fast tier with SSD journals, or even an all SSD tier
• Lower tier with fewer/lesser performing journal devices or no journal 

devices at all

August 15th-18th 2017 15



Ceph Deployment
Ceph-Deploy Tool
• Consolidates the deployment process under one command
• Originally Ceph was installed using a suite of tools
• Now the same tool is used for:

• Installation of Ceph software
• Commissioning the various Ceph components (ADM, MON, RGW, CephFS, 

RBD)
• Prepare raw storage
• Create OSDs

• Does not destroy OSDs
• Convoluted process

August 15th-18th 2017 16



Ceph Deployment
Other Tools
• Ceph Tool

• Older tool
• Still used to provision pools

• Query System

• RADOSGW-ADMIN Tool
• Used for user creation and manipulation
• Set quota
• Query usage

• Custom Scripts
• Many deployment and management scripts available
• See what the community has provided already, don’t re-invent the wheel if 

you don’t have to

August 15th-18th 2017 17



Features Worth Highlighting
• Supports Thin Provisioning

• Great for hosting virtual machine images

• Both the S3 Restful API and the Openstack Swift API are 
supported

• Erasure Encoding across disks
• Much more efficient use of space than replication

• Snapshots and Clones
• Large and growing community that is there to support 

others getting into Ceph for the first time

August 15th-18th 2017 18



Usage Patterns
Archive/Backup
• Very popular consumption pattern
• Can be User or Admin managed
• Space usage managed by quotas

• One drawback in management — No groups

• Access through many tools
• rclone, Globus, s3cmd, posix mount (if enabled)

• Great for dumping large tar.gz bundled datasets into

August 15th-18th 2017 19



Usage Patterns
WEB
• Objects can be accessed via a URL

• Similar to AWS
• Resolved as https://<bucket_name>.hostname.domain.name

• Or https://hostname.domain.name/<bucket_name>

• Not easily browsed
• Space is inherently flat
• All objects are peers
• Expresses the page as raw XML

• Objects must be made “public” to be URL accessible
• Access can be set to expire

August 15th-18th 2017 20



Usage Patterns
S3 API
• Popular in the web application space, the leading standard 

that most object storage systems support (not just Ceph or 
Swift)

• Program directly to the API
• Very scriptable, and is Restful

• Use other programmatic applications like Python Boto

August 15th-18th 2017 21



User Experience
Buckets and Objects
• All object space is flat

• No tree structure or hierarchy

• To help users navigate a tree structure is represented 
through tools

• Structure is represented as buckets (analogous to 
directories) and objects

• One user cannot by default see another users 
buckets/objects

• Must be shared

August 15th-18th 2017 22



User Experience

August 15th-18th 2017 23

Image Credit: Sam Linston



Resources
http://docs.ceph.com/docs/luminous/
http://ceph.com/resources/
https://www.redhat.com/en/technologies/storage/ceph/res
ources
http://ceph.com/irc/

August 15th-18th 2017 24



Ceph Questions Before Moving Along

August 15th-18th 2017 25



Swift

August 15th-18th 2017 26

Image Credit: swiftstack.com



Overview
• Object file system that was developed around Open Stack

• Open stack use for object is the largest use case for this object storage 
solution

• Large user base in the cloud space with lots of companies 
backing the project

• Leverages a ring based approach, with hashes determining 
file placement across the system

• Uses two types of servers
• Proxy Servers – Field API requests
• Storage Servers – Dish out and take the data

August 15th-18th 2017 27



How Is it Different
• Unlike Ceph, only provides Object based storage

• Has a very different architecture
• Narrower use focus
• Scales in a different, but neat way

• Leverages proxy servers for data access instead of clients 
directly being in contact with the storage servers

• Has better multi-region support
• Doesn’t rely on the Master-Slave concept that Ceph uses

• Assumes eventual consistency vs absolute consistency
• Can be an issue in certain instances

August 15th-18th 2017 28



Swift High Level Architecture

August 15th-18th 2017 29

Image Credit: linkedin.com



Swift Lower Level Architecture

August 15th-18th 2017 30

Image Credit: redhat.com



Ring Hashing

August 15th-18th 2017 31

Image Credit: ihong5.wordpress.com, redhat.com



Benefits to the Ring Method

August 15th-18th 2017 32

• Allows the number of proxy servers to scale extremely well
• All proxy servers are equal as the ring ensures they each 

know where all the data lives
• No need for coordinating between the proxy servers

• Ring hash ensures that there will be no collisions of objects
• Ring is static (unless capacity is being added or removed)

• Ease of updating and rolling proxy servers as there are just 
less to serve data requests

• If proxy server update failure occurs, doesn’t impact the system in any 
other way as long as quorum is still available



Downsides to the Ring Method

August 15th-18th 2017 33

• Increases the latency of data access to the clients
• No matter the speed of the server, it will add latency to the request as it 

has to broker the data exchange
• Especially when working with smaller objects, latency increases are more 

noticeable

• Streaming performance also effected
• Same issue as the increased latency, proxy servers decrease the ability of 

streaming performance of large files

• Eventual consistency can be problematic
• Details on next slide

• Performance is now dependent on scaling two 
independent server groups



Consistency Overview

August 15th-18th 2017 34

• What has to occur before a write to the system has been 
acknowledged back to the client machine

• Multiple operations occur when a write is done on the file system
• When is it ok to tell the client the write is done?
• The sooner the write is acknowledged, the sooner the next one can be 

sent

• Absolute vs Eventual consistency each come with upsides 
and downsides

• Ceph and Swift handle this differently even 
though both are object stores



Absolute Consistency

August 15th-18th 2017 35

• All replicas of the object being written need to be in place 
and completed before the write is acknowledged back to 
client

• More strict, but ensures the write completed and the 
object is in the correct state

• Prevents conflict writes to an object from happening at the 
same time on different replicas, and a collision occurring

• Becomes a performance bottleneck when replication 
across physical regions is involved

• Latency between sites will delay the write completion which thus 
increases the latency that the client sees



Eventual Consistency

August 15th-18th 2017 36

• All replicas of the object being written do not need to be in 
place and completed before the write is acknowledged back 
to client

• Less strict, more flexible for architectures where more 
latency is involved

• Opens door to conflicting writes to an object from 
happening at the same time on different replicas

• Beneficial in multi-region deployments as usually multiple 
regions aren’t dealing with the same objects

• No increased latency from having a site over a WAN connection that could 
hurt performance



Load Balancing

August 15th-18th 2017 37

• Load balancer is needed to distribute the API requests across 
the different proxy servers

• Clients aren’t explicitly aware of the specific architecture, 
count, or names of the servers backing the service

• Load balancer puts them in contact with random proxy server, client is 
handed data from the storage server holding data



Architecture Considerations

August 15th-18th 2017 38

Proxy Servers
• Design with high network throughput capacity, 10Gb or 

greater speeds
• Moderate RAM needs, 32GB/64GB sufficient
• Good candidate for dense blade systems (4 node- 2U chassis 

available from many vendors)
• Doesn’t need much local disk
• If access comes over public networks, use SSL to encrypt 

traffic



Architecture Considerations

August 15th-18th 2017 39

Storage Servers
• Where the data actually lives, so high drive capacity is 

desired
• Consider your drive choice

• Request is single thread to single drive, so single object stream throughput is 
at most the performance of one drive

• Beware of SMR drives or consumer drives to keep performance up
• Network performance important for feeding data to clients, 

use 10Gb or faster
• Beneficial to have two networks one for data access and another for cluster 

activities such as replication, especially if you use lower speed networks



Rate Limiting

August 15th-18th 2017 40

• Prevents a single container access from dominating the 
system and hurting performance of other users

• Can be down with bandwidth or IOPS
• Rate limits can be applied not just to containers, but also to 

certain users/accounts
• Great for users who consume high I/O needs
• Ensures fair access to the system for all

• Architecture Note:
• Time synchronization across the proxy servers is important here, skew can 

result in some rate limiting issues as the proxy servers track how much data is 
being access over given times



Resources

August 15th-18th 2017 41

• https://docs.openstack.org/swift/latest/admin_guide.html
• https://www.swiftstack.com/product/openstack-swift
• https://wiki.openstack.org/wiki/Swift



Acknowledgements

August 15th-18th 2017 42

• Thanks to Sam Linston from University of Utah for help with 
slide development content

• Members of the SET group at NCSA for slide review
• Members of the steering committee for slide review



Questions

August 15th-18th 2017 43


	Linux Clusters Institute:�Ceph & Swift
	Introduction
	Ceph
	Overview
	General High Level View
	Deeper Architecture Views
	Deeper Architecture Views
	A ”Jack of All Trades”
	Data Structure
	Data Structure
	Data Structure
	Architecture Considerations
	Architecture Considerations
	Architecture Considerations
	Architecture Considerations
	Ceph Deployment
	Ceph Deployment
	Features Worth Highlighting
	Usage Patterns
	Usage Patterns
	Usage Patterns
	User Experience
	User Experience
	Resources
	Ceph Questions Before Moving Along
	Swift
	Overview
	How Is it Different
	Swift High Level Architecture
	Swift Lower Level Architecture
	Ring Hashing
	Benefits to the Ring Method
	Downsides to the Ring Method
	Consistency Overview
	Absolute Consistency
	Eventual Consistency
	Load Balancing
	Architecture Considerations
	Architecture Considerations
	Rate Limiting
	Resources
	Acknowledgements
	Questions

